██████╗ ██████╗ ███████╗ ██████╗███████╗███████╗███████╗██╗ ██████╗ ███╗ ██╗
██╔══██╗██╔══██╗██╔════╝██╔════╝██╔════╝██╔════╝██╔════╝██║██╔═══██╗████╗ ██║
██████╔╝██████╔╝█████╗ ██║ █████╗ ███████╗███████╗██║██║ ██║██╔██╗ ██║
██╔═══╝ ██╔══██╗██╔══╝ ██║ ██╔══╝ ╚════██║╚════██║██║██║ ██║██║╚██╗██║
██║ ██║ ██║███████╗╚██████╗███████╗███████║███████║██║╚██████╔╝██║ ╚████║
╚═╝ ╚═╝ ╚═╝╚══════╝ ╚═════╝╚══════╝╚══════╝╚══════╝╚═╝ ╚═════╝ ╚═╝ ╚═══╝
◈ The Map Precedes the Territory ◈
"The territory no longer precedes the map... It is the map that engenders the territory."
Predictive Threat Modeling - Threats that exist before they happen
Baudrillard's "precession of simulacra" describes how models now precede reality—the map creates the territory. Precession applies this to threat modeling.
Traditional threat modeling: "What threats exist?" Precession: "What threats WILL exist when we build this?"
By modeling threats before systems exist, we create threats that are born into existence with their vulnerabilities already known.
- Design a system → Model all possible threats
- Threats become real → Because the system exists
- We predicted them → Before they were threats
- The model preceded reality
| Traditional | Precession |
|---|---|
| System exists → Find threats | Model threats → System exists |
| Penetration testing | Threat anticipation |
| "What went wrong?" | "What will go wrong?" |
| Forensics | Prophecy |
Predict threats from architecture
precession oracle --architecture system.yaml- Analyzes system design before implementation
- Predicts attack vectors from components
- Generates threat timeline (what will be discovered when)
- Outputs pre-emptive mitigations
Model threats that don't exist yet
precession emergence --technology "quantum computing" --domain "finance"- Projects future threat landscapes
- Models attacks using technologies that don't fully exist
- Predicts exploit development timelines
- Generates defensive R&D priorities
Create the threat before it's real
precession territory --target competitor.com --scope ethical- Maps attack surface of target
- Predicts which vulnerabilities they'll discover
- Models their incident response
- Generates engagement timeline
Generate specific threat predictions
precession prophecy --system production-api --horizon 90d- Concrete predictions with confidence intervals
- Expected CVE timeline
- Attack probability modeling
- Defender preparation checklist
██████╗ ██████╗ ███████╗ ██████╗███████╗███████╗███████╗██╗ ██████╗ ███╗ ██╗
[FORESEEING] The map is being drawn...
◈ THREAT PRECESSION REPORT ◈
Target: New Financial API (pre-launch)
Architecture: microservices, Kubernetes, Go backend, React frontend
Analysis Date: 2026-02-03
Prediction Horizon: 180 days post-launch
┌─────────────────────────────────────────────────────────────────────┐
│ PREDICTED THREAT TIMELINE │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ Day 0-7: Launch │
│ → Automated scanners will find: exposed /metrics endpoint (94%) │
│ → Expected CVE publication: none (too new) │
│ → Attack probability: LOW │
│ │
│ Day 7-30: Discovery Phase │
│ → Researchers will report: JWT algorithm confusion (78%) │
│ → IDOR in user profile endpoint (82%) │
│ → Rate limiting bypass in login (67%) │
│ → Expected bug bounty submissions: 12-18 │
│ │
│ Day 30-90: Weaponization │
│ → PoC exploit for JWT issue (if unpatched): Day 45 ± 10 │
│ → First automated exploitation attempt: Day 60 ± 15 │
│ → Integration into exploit kits: Day 75 ± 20 │
│ │
│ Day 90-180: Maturity │
│ → Nation-state interest probability: 23% │
│ → Data breach probability (if no patches): 67% │
│ → Compliance violation discovery: 89% │
│ │
│ Confidence: ████████░░ 81% │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ SPECIFIC VULNERABILITY PREDICTIONS │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ VULN-001: JWT Algorithm Confusion │
│ Component: /api/auth/verify │
│ Attack Vector: Change alg:RS256 to alg:HS256 │
│ Discovery: Day 12 ± 5 │
│ CVSS Prediction: 8.1 (High) │
│ Mitigation: Hardcode algorithm, reject others │
│ Mitigation Cost: 4 engineer-hours │
│ │
│ VULN-002: IDOR in Profile Endpoint │
│ Component: /api/users/{id}/profile │
│ Attack Vector: Increment user ID │
│ Discovery: Day 8 ± 3 │
│ CVSS Prediction: 6.5 (Medium) │
│ Mitigation: Verify ownership, use UUID │
│ Mitigation Cost: 8 engineer-hours │
│ │
│ VULN-003: GraphQL Introspection Exposure │
│ Component: /graphql │
│ Attack Vector: Query __schema │
│ Discovery: Day 3 ± 1 │
│ CVSS Prediction: 4.3 (Medium) │
│ Mitigation: Disable introspection in production │
│ Mitigation Cost: 1 engineer-hour │
│ │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ PRE-EMPTIVE ACTION PLAN │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ BEFORE LAUNCH (Total: 24 engineer-hours) │
│ ☐ Implement JWT algorithm pinning [4h] [Critical] │
│ ☐ Add ownership verification to all endpoints [8h] [High] │
│ ☐ Disable GraphQL introspection [1h] [Medium] │
│ ☐ Add anomaly detection on auth endpoints [6h] [High] │
│ ☐ Implement proper rate limiting [5h] [High] │
│ │
│ Investment: 24 hours now │
│ Saves: ~340 hours incident response + reputational damage │
│ ROI: 1,316% │
│ │
└─────────────────────────────────────────────────────────────────────┘
◈ PROPHECY SUMMARY ◈
Predicted vulnerabilities: 7
Critical pre-launch fixes: 3
Expected CVEs prevented: 2
Breach probability reduction: 67% → 12%
"The future is already here—it's just not evenly distributed."
git clone https://github.com/bad-antics/precession
cd precession
pip install -e .
precession --awaken