Skip to content

Source code of PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

License

Notifications You must be signed in to change notification settings

wontleave/GeneticAlgorithmPython

 
 

Repository files navigation

PyGAD: Genetic Algorithm in Python

PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch.

Check documentation of the PyGAD.

Downloads Docs

PYGAD-LOGO

PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.

The library is under active development and more features are added regularly. If you want a feature to be supported, please check the Contact Us section to send a request.

Donation

You can donate via Open Collective: opencollective.com/pygad.

To donate using PayPal, use either this link: paypal.me/ahmedfgad or the e-mail address [email protected].

Installation

To install PyGAD, simply use pip to download and install the library from PyPI (Python Package Index). The library lives a PyPI at this page https://pypi.org/project/pygad.

Install PyGAD with the following command:

pip install pygad

PyGAD is developed in Python 3.7.3 and depends on NumPy for creating and manipulating arrays and Matplotlib for creating figures. The exact NumPy version used in developing PyGAD is 1.16.4. For Matplotlib, the version is 3.1.0.

To get started with PyGAD, please read the documentation at Read The Docs https://pygad.readthedocs.io.

PyGAD Source Code

The source code of the PyGAD' modules is found in the following GitHub projects:

The documentation of PyGAD is available at Read The Docs https://pygad.readthedocs.io.

PyGAD Documentation

The documentation of the PyGAD library is available at Read The Docs at this link: https://pygad.readthedocs.io. It discusses the modules supported by PyGAD, all its classes, methods, attribute, and functions. For each module, a number of examples are given.

If there is an issue using PyGAD, feel free to post at issue in this GitHub repository https://github.com/ahmedfgad/GeneticAlgorithmPython or by sending an e-mail to [email protected].

If you built a project that uses PyGAD, then please drop an e-mail to [email protected] with the following information so that your project is included in the documentation.

  • Project title
  • Brief description
  • Preferably, a link that directs the readers to your project

Please check the Contact Us section for more contact details.

Life Cycle of PyGAD