Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery
- PMID: 20639395
- PMCID: PMC2947399
- DOI: 10.1093/hmg/ddq300
Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery
Abstract
Proximal spinal muscular atrophy (SMA) is a debilitating neurological disease marked by isolated lower motor neuron death and subsequent atrophy of skeletal muscle. Historically, SMA pathology was thought to be limited to lower motor neurons and the skeletal muscles they control, yet there are several reports describing the coincidence of cardiovascular abnormalities in SMA patients. As new therapies for SMA emerge, it is necessary to determine whether these non-neuromuscular systems need to be targeted. Therefore, we have characterized left ventricular (LV) function of SMA mice (SMN2+/+; SMNΔ7+/+; Smn-/-) and compared it with that of their unaffected littermates at 7 and 14 days of age. Anatomical and physiological measurements made by electrocardiogram and echocardiography show that affected mouse pups have a dramatic decrease in cardiac function. At 14 days of age, SMA mice have bradycardia and develop a marked dilated cardiomyopathy with a concomitant decrease in contractility. Signs of decreased cardiac function are also apparent as early as 7 days of age in SMA animals. Delivery of a survival motor neuron-1 transgene using a self-complementary adeno-associated virus serotype 9 abolished the symptom of bradycardia and significantly decreased the severity of the heart defect. We conclude that severe SMA animals have compromised cardiac function resulting at least partially from early bradycardia, which is likely attributable to aberrant autonomic signaling. Further cardiographic studies of human SMA patients are needed to clarify the clinical relevance of these findings from this SMA mouse.
Figures






Similar articles
-
AAV9-Stathmin1 gene delivery improves disease phenotype in an intermediate mouse model of spinal muscular atrophy.Hum Mol Genet. 2019 Nov 15;28(22):3742-3754. doi: 10.1093/hmg/ddz188. Hum Mol Genet. 2019. PMID: 31363739 Free PMC article.
-
Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN.Nat Biotechnol. 2010 Mar;28(3):271-4. doi: 10.1038/nbt.1610. Epub 2010 Feb 28. Nat Biotechnol. 2010. Retraction in: Nat Biotechnol. 2022 Nov;40(11):1692. doi: 10.1038/s41587-022-01497-7. PMID: 20190738 Free PMC article. Retracted.
-
A large animal model of spinal muscular atrophy and correction of phenotype.Ann Neurol. 2015 Mar;77(3):399-414. doi: 10.1002/ana.24332. Epub 2015 Feb 9. Ann Neurol. 2015. PMID: 25516063 Free PMC article.
-
Therapeutics development for spinal muscular atrophy.NeuroRx. 2006 Apr;3(2):235-45. doi: 10.1016/j.nurx.2006.01.010. NeuroRx. 2006. PMID: 16554261 Free PMC article. Review.
-
Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape.Hum Mol Genet. 2017 Oct 1;26(R2):R151-R159. doi: 10.1093/hmg/ddx215. Hum Mol Genet. 2017. PMID: 28977438 Review.
Cited by
-
Somatic Therapy of a Mouse SMA Model with a U7 snRNA Gene Correcting SMN2 Splicing.Mol Ther. 2016 Oct;24(10):1797-1805. doi: 10.1038/mt.2016.152. Epub 2016 Jul 26. Mol Ther. 2016. PMID: 27456062 Free PMC article.
-
The advent of AAV9 expands applications for brain and spinal cord gene delivery.Expert Opin Biol Ther. 2012 Jun;12(6):757-66. doi: 10.1517/14712598.2012.681463. Epub 2012 Apr 20. Expert Opin Biol Ther. 2012. PMID: 22519910 Free PMC article. Review.
-
Current and emerging treatment options for spinal muscular atrophy.Degener Neurol Neuromuscul Dis. 2015 Jul 17;5:75-81. doi: 10.2147/DNND.S48420. eCollection 2015. Degener Neurol Neuromuscul Dis. 2015. PMID: 32669914 Free PMC article. Review.
-
Developing therapies for spinal muscular atrophy.Ann N Y Acad Sci. 2016 Feb;1366(1):5-19. doi: 10.1111/nyas.12813. Epub 2015 Jul 14. Ann N Y Acad Sci. 2016. PMID: 26173388 Free PMC article. Review.
-
Glucose metabolism and pancreatic defects in spinal muscular atrophy.Ann Neurol. 2012 Aug;72(2):256-68. doi: 10.1002/ana.23582. Ann Neurol. 2012. PMID: 22926856 Free PMC article.
References
-
- Roberts D.F., Chavez J., Court S.D. The genetic component in child mortality. Arch. Dis. Child. 1970;45:33–38. doi:10.1136/adc.45.239.33. - DOI - PMC - PubMed
-
- Lefebvre S., Burglen L., Reboullet S., Clermont O., Burlet P., Viollet L., Benichou B., Cruaud C., Millasseau P., Zeviani M., et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–165. doi:10.1016/0092-8674(95)90460-3. - DOI - PubMed
-
- Burghes A.H., Beattie C.E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat. Rev. Neurosci. 2009;10:597–609. doi:10.1038/nrn2670. - DOI - PMC - PubMed
-
- Lefebvre S., Burlet P., Liu Q., Bertrandy S., Clermont O., Munnich A., Dreyfuss G., Melki J. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 1997;16:265–269. doi:10.1038/ng0797-265. - DOI - PubMed
-
- Coovert D.D., Le T.T., McAndrew P.E., Strasswimmer J., Crawford T.O., Mendell J.R., Coulson S.E., Androphy E.J., Prior T.W., Burghes A.H. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 1997;6:1205–1214. doi:10.1093/hmg/6.8.1205. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials