Skip to main content

Pathlength of Outerplanar Graphs

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

  • 798 Accesses

Abstract

A path-decomposition of a graph \(G=(V,E)\) is a sequence of subsets of V, called bags, that satisfy some connectivity properties. The length of a path-decomposition of a graph G is the greatest distance between two vertices that belong to a same bag and the pathlength, denoted by \(p\ell (G)\), of G is the smallest length of its path-decompositions. This parameter has been studied for its algorithmic applications for several classical metric problems like the minimum eccentricity shortest path problem, the line-distortion problem, etc. However, deciding if the pathlength of a graph G is at most 2 is NP-complete, and the best known approximation algorithm has a ratio 2 (there is no c-approximation with \(c<\frac{3}{2}\) unless \(P=NP\)). In this work, we focus on the study of the pathlength of simple sub-classes of planar graphs. We start by designing a linear-time algorithm that computes the pathlength of trees. Then, we show that the pathlength of cycles with n vertices is equal to \(\lfloor \frac{n}{2}\rfloor \). Finally, our main result is a \((+1)\)-approximation algorithm for the pathlength of outerplanar graphs. This algorithm is based on a characterization of almost optimal (of length at most \(p\ell (G)+1\)) path-decompositions of outerplanar graphs.

This work is partially founded by projects UCA JEDI (ANR-15-IDEX-01), the ANR project Digraphs (ANR-19-CE48-001) and EUR DS4H (ANR-17-EURE-004) Investments in the Future. Due to lack of space, some proofs are omitted or sketched. Full proofs can be found in [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension of bounded tree-length graphs. SIAM J. Discrete Math. 31(2), 1217–1243 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blumensath, A., Courcelle, B.: Monadic second-order definable graph orderings. Log. Methods Comput. Sci. 10(1) (2014)

    Google Scholar 

  3. Bodlaender, H.L., Fomin, F.V.: Approximation of pathwidth of outerplanar graphs. J. Algorithms 43(2), 190–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coudert, D., Huc, F., Sereni, J.-S.: Pathwidth of outerplanar graphs. J. Graph Theory 55(1), 27–41 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dissaux, T., Nisse, N.: Pathlength of Outerplanar graphs. Research report, Inria & Université Nice Sophia Antipolis, CNRS, I3S, Sophia Antipolis, France, April 2022. https://hal.archives-ouvertes.fr/hal-03655637

  6. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307(16), 2008–2029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, bandwidth and path-length of a graph. Algorithmica 77(3), 686–713 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dragan, F.F., Leitert, A.: Minimum eccentricity shortest paths in some structured graph classes. J. Graph Algorithms Appl. 20(2), 299–322 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ducoffe, G., Legay, S., Nisse, N.: On the complexity of computing treebreadth. Algorithmica 82(6), 1574–1600 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herlihy, M., Kuhn, F., Tirthapura, S., Wattenhofer, R.: Dynamic analysis of the arrow distributed protocol. Theory Comput. Syst. 39(6), 875–901 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS, pp. 10–33. IEEE (2001)

    Google Scholar 

  13. Kosowski, A., Li, B., Nisse, N., Suchan, K.: \(k\)-chordal graphs: From cops and robber to compact routing via treewidth. Algorithmica 72(3), 758–777 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 119–132 (2006)

    Google Scholar 

  15. Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees. Theor. Comput. Sci. 58, 209–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tenenbaum, J.B., de Silva, V., Langford, J.C. : A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dissaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dissaux, T., Nisse, N. (2022). Pathlength of Outerplanar Graphs. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics