Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Graph Theory and Algorithms
  3. Conference paper

Some common properties for regularizable graphs, edge-critical graphs and b-graphs

  • Conference paper
  • First Online: 01 January 2005
  • pp 108–123
  • Cite this conference paper
Graph Theory and Algorithms
Some common properties for regularizable graphs, edge-critical graphs and b-graphs
  • Claude Berge1 

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 108))

  • 846 Accesses

  • 35 Citations

Download to read the full chapter text

Chapter PDF

References

  1. B. Andrásfai, On critical graphs, Théorie des Graphes (Rome I.C.C.), Paris, (1967), 9–19.

    Google Scholar 

  2. C. Berge, Graphes et Hypergraphes (Dunod, Paris, 1970).

    Google Scholar 

  3. C. Berge, Une propriete des graphes k-stables critiques, Combinatorial Structures (Gordon and Breach, New York, 1970) 7–11.

    Google Scholar 

  4. C. Berge, Regularizable Graphs, Proc. I.S.I. Conference on Graph Theory, Calcutta, 1976.

    Google Scholar 

  5. C. Berge, Regularizable Graphs, Annals of Discrete Math. 3 (1978) 11–19.

    Google Scholar 

  6. R. A. Brualdi, Combinatorial Properties of symmetric non-negative matricies, Coll. Th. Combinat. Rome, 2 (1976) 99–120.

    Google Scholar 

  7. G. Cornuejols, W. Pulleyblank, A matching problem with side conditions, Discrete Math. 29 (1980) 135–139.

    Google Scholar 

  8. P. Erdös, T. Gallai, On the minimal number of vertices representing the edges of a graph, Publ. Math. Inst. Hung. Acad. Sci. 6 (1961) 181–203.

    Google Scholar 

  9. D. R. Fulkerson, A. J. Hoffman, M. H. McAndrew, Some properties of graphs with multiple edges, Can. J. Math. (1965) 166–177.

    Google Scholar 

  10. A. George, On line-critical graphs, Thesis, Vanderbilt Univ., Nashville, TN (1971).

    Google Scholar 

  11. A. Hajnal, A theorem on k-saturated graphs, Can. J. Math. 17 (1965) 720–772.

    Google Scholar 

  12. F. Jaeger, C. Payan, A class of regularizable graphs, Annals of Discrete Math. 3 (1978) 125–127.

    Google Scholar 

  13. M. Las Vergnas, A note on matchings, Acts Coll. Brussells, CER, 17, 1975, 255–260.

    Google Scholar 

  14. G. L. Nemhauser, L. E. Trotter, Vertex packings: structural properties and algorithms, Math. Programming 8 (1975) 232–248.

    Google Scholar 

  15. M. D. Plummer, On a family of line critical graphs, Monatsh. Math. 71 (1967) 40–48.

    Google Scholar 

  16. M. D. Plummer, Some covering concepts in Graphs, J. Comb. Theory B (1970) 46–48.

    Google Scholar 

  17. W. R. Pulleyblank, Minimum node covers and 2-bicritical graphs, Math. Programming 17 (1979) 91–103.

    Google Scholar 

  18. G. Ravindra, Well coverd Graphs, I.I.T. Madras (1976).

    Google Scholar 

  19. G. Ravindra, B-Graphs, Symposium on Graph Theory, I.S.I. (1976).

    Google Scholar 

  20. F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number, J. Comb. Theory B 27 (1979) 228–229.

    Google Scholar 

  21. D. P. Sumner, Graphs with 1-factors, Proc. Am. Math. Soc. 42, 1974, 8–12.

    Google Scholar 

  22. L. Suranyi, On line-critical graphs, Infinite and finite sets, (North Holland, Amsterdam, 1975) 1411–1444.

    Google Scholar 

  23. W. Tutte, The factors of graphs, Canad. J. Math. 4 (1952) 314–328.

    Google Scholar 

  24. A. A. Zykov, On some properties of linear complexes, Math. USSR Sb. 24 (1949) 163–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Universite de Paris 6, Paris, France

    Claude Berge

Authors
  1. Claude Berge
    View author publications

    Search author on:PubMed Google Scholar

Editor information

N. Saito T. Nishizeki

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berge, C. (1981). Some common properties for regularizable graphs, edge-critical graphs and b-graphs. In: Saito, N., Nishizeki, T. (eds) Graph Theory and Algorithms. Lecture Notes in Computer Science, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10704-5_10

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/3-540-10704-5_10

  • Published: 26 May 2005

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10704-0

  • Online ISBN: 978-3-540-38661-2

  • eBook Packages: Springer Book Archive

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

45.84.196.118

Not affiliated

Springer Nature

© 2025 Springer Nature