Skip to main content

Advertisement

Log in

The association of GABRB2 SNPs with cognitive function in schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Cognitive impairment is one of the core symptoms of schizophrenia. Multiple domains of cognition are affected in patients with schizophrenia, which has a major effect on the functional outcome. Recent studies indicate that SNPs in the gamma-aminobutyric acid type A receptor beta 2 subunit (GABRB2) gene are associated with the risk of schizophrenia, however, the effect of these SNPs on cognitive function in patients with schizophrenia has not been explored. In this study, we first performed a case–control analysis of three SNPs (rs187269 allele A vs. G, rs252944 allele C vs. G, and rs194072 allele A vs. G) in 100 patients and 90 controls, then conducted a meta-analysis and found the SNP rs194072 was associated with schizophrenia (OR = 0.86, P = 0.0119), and survived after Bonferroni correction. The haplotype analysis suggested that the haplotype ACA, comprising the three SNPs (rs187269, rs252944 and rs194072) was also significantly associated with schizophrenia (P = 0.049).Then, we performed an association analysis of three SNPs (rs187269, rs252944 and rs194072) in GABRB2 gene with cognitive performance in patients with first episode schizophrenia. We found that the allele G of rs187269 in the GABRB2 gene was significantly associated with better cognitive flexibility (P = 0.005), a major aspect of executive function, in patients with first episode schizophrenia. The haplotype ACA was significantly associated with cognitive flexibility in patients with schizophrenia (P = 0.023). Our study showed that SNPs in GABRB2 may have a significant effect on cognitive function in patients with schizophrenia, suggesting that modulating GABRB2 may have therapeutic potential to improve cognitive function of patients with schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bhugra D (2005) The global prevalence of schizophrenia. PLoS Med 2(5):e151

    Article  Google Scholar 

  2. Pfammatter M, Junghan UM, Brenner HD (2006) Efficacy of psychological therapy in schizophrenia: conclusions from meta-analyses. Schizophr Bull 32(Suppl 1):S64–S80

    Article  Google Scholar 

  3. Harris AW et al (2017) Web-based cognitive remediation improves supported employment outcomes in severe mental illness: randomized controlled trial. JMIR Ment Health 4(3):e30

    Article  Google Scholar 

  4. Lichtshtein D et al (1978) Gamma-aminobutyric acid (GABA) in the CSF of schizophrenic patients before and after neuroleptic treatment. Br J Psychiatry 132:145–148

    Article  CAS  Google Scholar 

  5. Tsang SY et al (2013) Social cognitive role of schizophrenia candidate gene GABRB2. PLoS One 8(4):e62322

    Article  CAS  Google Scholar 

  6. Yeung RK et al (2018) Gabrb2-knockout mice displayed schizophrenia-like and comorbid phenotypes with interneuron-astrocyte-microglia dysregulation. Transl Psychiatry 8(1):128

    Article  Google Scholar 

  7. Lo WS et al (2004) Association of SNPs and haplotypes in GABAA receptor beta2 gene with schizophrenia. Mol Psychiatry 9(6):603–608

    Article  CAS  Google Scholar 

  8. Zhao C et al (2012) Epigenetic regulation on GABRB2 isoforms expression: developmental variations and disruptions in psychotic disorders. Schizophr Res 134(2–3):260–266

    Article  Google Scholar 

  9. Lo WS et al (2007) GABRB2 association with schizophrenia: commonalities and differences between ethnic groups and clinical subtypes. Biol Psychiatry 61(5):653–660

    Article  CAS  Google Scholar 

  10. Yu Z et al (2006) Analysis of GABRB2 association with schizophrenia in German population with DNA sequencing and one-label extension method for SNP genotyping. Clin Biochem 39(3):210–218

    Article  CAS  Google Scholar 

  11. Petryshen TL et al (2005) Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 10(12):1074–1088, 1057

    Article  CAS  Google Scholar 

  12. Zhang T et al (2018) Meta-analysis of GABRB2 polymorphisms and the risk of schizophrenia combined with GWAS data of the Han Chinese population and psychiatric genomics consortium. PLoS One 13(6):e0198690

    Article  Google Scholar 

  13. Allen NC et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40(7):827

    Article  CAS  Google Scholar 

  14. Shi J, Gershon ES, Liu C (2008) Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr Res 104(1–3):96–107

    Article  Google Scholar 

  15. Pun FW et al (2011) Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor beta(2) subunit. Mol Psychiatry 16(5):557–568

    Article  CAS  Google Scholar 

  16. Zhao C et al (2006) Two isoforms of GABA(A) receptor beta2 subunit with different electrophysiological properties: differential expression and genotypical correlations in schizophrenia. Mol Psychiatry 11(12):1092–1105

    Article  CAS  Google Scholar 

  17. Grant DA, Berg EA (1993) Wisconsin card sorting test (WCST)

  18. Redick TS, Engle RW (2010) Working memory capacity and attention network test performance. Appl Cognit Psychol 20(5):713–721

    Article  Google Scholar 

  19. Tombaugh TN (2004) Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 19(2):203–214

    Article  Google Scholar 

  20. Gazzaniga et al (2009) Cognitive neuroscience: the biology of the mind. W. W. Norton, New York, 87–90

    Google Scholar 

  21. Duijkers JC, Vissers CT, Egger JI (2016) Unraveling executive functioning in dual diagnosis. Front Psychol 7:979

    Article  Google Scholar 

  22. Borkowska A et al (2009) The wisconsin card sorting test and the N-back test in mild cognitive impairment and elderly depression. World J Biol Psychiatry 10(4–3):870–876

    Google Scholar 

  23. Drapier D et al (2008) Genetic liability for bipolar disorder is characterized by excess frontal activation in response to a working memory task. Biol Psychiat 64(6):513–520

    Article  Google Scholar 

Download references

Funding

The present work was funded by National Natural Science Foundation of China (No. 81571334 and No. 81771147), Natural Science Foundation of Shandong Province (ZR2011HM023, ZR2016HM30), research project of teaching reform in undergraduate colleges and universities in Shandong Province(2015M049), the development of medical science and technology project of Shandong Province(2011HZ011), science and technology project of higher education of Shandong Province(J10LF01) and postgraduate education innovation program of Shandong Province(SDYY15012).

Author information

Authors and Affiliations

Authors

Contributions

QZ, XZ, SS and HH performed the cognitive test in patients and collected the blood samples; QZ and XW performed DNA extraction and amplification experiments; HY, SW and XZ analyzed the data; QZ, HY, and SW wrote the paper. GL and YW conceived the experiments and wrote the paper. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Gongying Li or Yili Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, X., Song, S. et al. The association of GABRB2 SNPs with cognitive function in schizophrenia. Eur Arch Psychiatry Clin Neurosci 270, 443–449 (2020). https://doi.org/10.1007/s00406-019-00985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-019-00985-3

Keywords

Profiles

  1. Hao Yu