Skip to main content

Advertisement

Log in

Liquid–Liquid Equilibrium and Thermodynamic Modeling of Aqueous Two-Phase System Containing Polypropylene Glycol and NaClO4 at T = (288.15 and 298.15) K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work the phase equilibrium of an aqueous two phase system (ATPS) containing polypropylene glycol (PPG, molecular weight = 425 kg·mol−1) and NaClO4 was investigated at atmospheric pressure and at 288.15 and 298.15 K. Two phase regions and composition of phases were determined. Our results show that as the temperature increases, the two-phase region expands. Also, the extended UNIQUAC (E-UNIQUAC) equation was used to correlate the equilibrium data. To reduce the number of adjustable parameters, ATPSs composed of PEG and PPG were collected from the literature and simultaneously correlated using the E-UNIQUAC model. Also, the effect of temperature on the liquid–liquid equilibrium (LLE) was considered by using temperature-dependent parameters. In the modeling, two different scenarios were supposed. In the first, polymer and salt were treated as solutes (Case A), while in the second, the pseudo-solvent approach was considered (Case B). The results showed good agreement with experimental data in both cases. The average absolute deviation of the model using Case B was about 0.2% and that for Case A was about 2% in the ATPS composed of PEG. Meanwhile, the reported errors in the ATPS containing PPG for Case A and Case B were almost equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

G ex :

Excess Gibbs energy

\( n_{\text{D}}^{\text{o}} \) :

Refractive index of water

A :

Debye–Hückel constant

U ij :

Interaction parameters

b :

Debye–Hückel constant

d :

Density (kg·m−3)

D :

Mixed-solvent dielectric constant

I :

Ionic strength on the molal scale

m :

Molality

M :

Molecular weight (kg·mol−1)

n D :

Refractive index

OF:

Objective function

q :

Surface parameter

r :

Volume parameter

T :

Temperature (K)

V :

Molar volume

w :

Weight percent

x :

Mole fraction

Z :

Charge number or coordination number (= 10)

γ:

Activity coefficient

θ :

Surface area fraction

φ and ϕ :

Volume fraction

I:

Bottom phase

II:

Top phase

S :

Number of tie lines

N :

Number of components

cal:

Calculated value

exp:

Experimental value

UQ:

UNIQUAC equation

DH:

Debye–Hückel equation

References

  1. Edahiro, J., Sumaru, K., Takagi, T., Shinbo, T., Kanamori, T.: Photoresponse of an aqueous two-phase system composed of photochromic dextran. Langmuir 22, 5224–5226 (2006). https://doi.org/10.1021/la060318q

    Article  CAS  Google Scholar 

  2. Walter, H.: Partitioning in Aqueous Two-Phase System. Theory, Methods, Uses and Applications to Biotechnology. Elsevier, New York (1985)

    Google Scholar 

  3. Zaslavsky, B.Y.: Aqueous Two-Phase Partitioning-Physical Chemistry and Bioanalytical Applications. CRC Press, Boca Rotan (1995)

    Google Scholar 

  4. Zhang, Y., Mao, H., Cremer, P.S.: Probing the mechanism of aqueous two-phase system formation for α-elastin on-chip. J. Am. Chem. Soc. 125, 15630–15635 (2003). https://doi.org/10.1021/ja037869c

    Article  CAS  Google Scholar 

  5. Valavi, M., Dehghani, M.R., Feyzi, F.: Calculation of liquid–liquid equilibrium in polymer electrolyte solutions using PHSC–electrolyte equation of state. Fluid Phase Equilib. 341, 96–104 (2013)

    Article  CAS  Google Scholar 

  6. Hatti-Kaul, R.: Aqueous Two-Phase Systems Methods and Protocols. Humana Press, Totowa (2000)

    Book  Google Scholar 

  7. Rodrigues, G.D., Lemosa, L.R., de Silva, L.H.M., de Silva, M.C.H.D.: Application of hydrophobic extractant in aqueous two-phase systems for selective extraction of cobalt, nickel and cadmium. J. Chromatogr. A 1279, 13–19 (2013)

    Article  CAS  Google Scholar 

  8. Rodríguez, O., Silvério, S.C., Madeira, P.P., Teixeira, J.A., Macedo, E.A.: Physicochemical characterization of the PEG8000–Na2SO4 aqueous two-phase system. Ind. Eng. Chem. Res. 46, 8199–8204 (2007). https://doi.org/10.1021/ie070473f

    Article  Google Scholar 

  9. Show, P.L., Ooi, C.W., Anuar, M.S., Ariff, A., Yusof, Y.A., Chen, S.K., Annuar, M.S., Ling, T.C.: Recovery of lipase derived from Burkholderia cenocepacia ST8 using sustainable aqueous two-phase flotation composed of recycling hydrophilic organic solvent and inorganic salt. Sep. Purif. Technol. 110, 112–118 (2013)

    Article  CAS  Google Scholar 

  10. Mohamed-Ali, S., Ling, T.C., Muniandy, S., Tan, Y.S., Raman, J., Sabaratnam, V.: Recovery and partial purification of fibrinolytic enzymes of Auricularia polytricha (Mont.) Sacc by an aqueous two-phase system. Sep. Purif. Technol. 122, 359–366 (2014)

    Article  CAS  Google Scholar 

  11. Bulgariu, L., Bulgariu, D.: Selective extraction of Hg(II), Cd(II) and Zn(II) ions from aqueous media by a green chemistry procedure using aqueous two-phase systems. Sep. Purif. Technol. 118, 209–216 (2013)

    Article  CAS  Google Scholar 

  12. Hamta, A., Dehghani, M.R.: Application of polyethylene glycol based aqueous two-phase systems for extraction of heavy metals. J. Mol. Liq. 231, 20–24 (2017)

    Article  CAS  Google Scholar 

  13. Perumalsamy, M., Murugesan, T.: Phase compositions, molar mass, and temperature effect on densities, viscosities, and liquid−liquid equilibrium of polyethylene glycol and salt-based aqueous two-phase systems. J. Chem. Eng. Data 54, 1359–1366 (2009). https://doi.org/10.1021/je801004n

    Article  CAS  Google Scholar 

  14. Regupathi, I., Murugesan, S., Govindarajan, R., Amaresh, S.P., Thanapalan, M.: Liquid−liquid equilibrium of poly(ethylene glycol) 6000 + triammonium citrate + water systems at different temperatures. J. Chem. Eng. Data 54, 1094–1097 (2009). https://doi.org/10.1021/je8008478

    Article  CAS  Google Scholar 

  15. Sadeghi, R., Jamehbozorg, B.: The salting-out effect and phase separation in aqueous solutions of sodium phosphate salts and poly(propylene glycol). Fluid Phase Equilib. 280, 68–75 (2009). https://doi.org/10.1016/j.fluid.2009.03.005

    Article  CAS  Google Scholar 

  16. Zafarani-Moattar, M.T., Emamian, S., Hamzehzadeh, S.: Effect of temperature on the phase equilibrium of the aqueous two-phase poly(propylene glycol) + tripotassium citrate system. J. Chem. Eng. Data 53(2), 456–461 (2008). https://doi.org/10.1021/je700549u

    Article  CAS  Google Scholar 

  17. Salabat, A., Moghadasi, M.A., Zalaghi, P., Sadeghi, R.: (Liquid + liquid) equilibria for ternary mixtures of (polyvinylpyrrolidone + MgSO4 + water) at different temperatures. J. Chem. Thermodyn. 38, 1479–1483 (2006). https://doi.org/10.1016/j.jct.2005.12.013

    Article  CAS  Google Scholar 

  18. Sadeghi, R., Rafiei, H.R., Motamedi, M.: Phase equilibrium in aqueous two-phase systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures—experimental and modeling. Thermochim. Acta 451, 163–167 (2006). https://doi.org/10.1016/j.tca.2006.10.002

    Article  CAS  Google Scholar 

  19. Voros, N., Proust, P., Fredenslund, A.: Liquid–liquid phase equilibria of aqueous two-phase systems containing salts and polyethylene glycol. Fluid Phase Equilib. 90, 333–353 (1993). https://doi.org/10.1016/0378-3812(93)85071-S

    Article  CAS  Google Scholar 

  20. Mishima, K., Nakatani, K., Nomiyama, T., Matsuyama, K., Nagatani, M., Nishikawa, H.: Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and dipotassium hydrogenphosphate. Fluid Phase Equilib. 107, 269–276 (1995). https://doi.org/10.1016/0378-3812(95)02684-7

    Article  CAS  Google Scholar 

  21. Patrício, P.D.R., Mageste, A.B., de Lemos, L.R., de Carvalho, R.M.M., da Silva, L.H.M., da Silva, M.C.H.: Phase diagram and thermodynamic modeling of PEO + organic salts + H2O and PPO + organic salts + H2O aqueous two-phase systems. Fluid Phase Equilib. 305, 1–8 (2011). https://dx.doi.org/10.1016/j.fluid.2011.02.013

  22. Zafarani-Moattar, M.T., Hamzehzadeh, S.: Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium succinate or sodium formate. CALPHAD 29, 1–6 (2005)

    Article  CAS  Google Scholar 

  23. Rasa, H., Mohsen-Nia, M., Modarress, H.: Phase separation in aqueous two-phase systems containing poly(ethylene glycol) and magnesium sulphate at different temperatures. J. Chem. Thermodyn. 40, 573–579 (2008)

    Article  CAS  Google Scholar 

  24. Zafarani-Moattar, M.T., Sadeghi, R.: Measurement and correlation of liquid–liquid equilibria of the aqueous two-phase system polyvinylpyrrolidone–sodium dihydrogen phosphate. Fluid Phase Equilib. 203, 177–191 (2002). https://doi.org/10.1016/S0378-3812(02)00179-6

    Article  CAS  Google Scholar 

  25. Salabat, A., Sadeghi, R.: Water activities of ternary mixtures of PPG425 +K2CO3 + H2O and PPG425 + Na2CO3 + H2O at 298.15 K: experiments and correlation. Fluid Phase Equilib. 252, 47–52 (2007)

    Article  CAS  Google Scholar 

  26. Claros, M., Taboada, M.E., Galleguillos, H.R., Jimenez, Y.P.: Liquid–liquid equilibrium of the CuSO4 + PEG 4000 + H2O system at different temperatures. Fluid Phase Equilib. 363, 199–206 (2014)

    Article  CAS  Google Scholar 

  27. Zafarani-Moattar, M.T., Nasiri, S.: Phase diagrams for liquid–liquid and liquid–solid equilibrium of the ternary poly ethylene glycol di-methyl ether 2000 + tri-sodium phosphate + water system at different temperatures and ambient pressure. CALPHAD 34, 222–231 (2010)

    Article  CAS  Google Scholar 

  28. Perumalsamy, M., Murugesan, T.: Prediction of liquid–liquid equilibria for PEG 2000–sodium citrate based aqueous two-phase systems. Fluid Phase Equilib. 244, 52–61 (2006). https://doi.org/10.1016/j.fluid.2006.03.008

    Article  CAS  Google Scholar 

  29. Haghtalab, A., Joda, M.: Modification of NRTL–NRF model for computation of liquid–liquid equilibria in aqueous two-phase polymer–salt systems. Fluid Phase Equilib. 278, 20–26 (2009)

    Article  CAS  Google Scholar 

  30. Haghtalab, A., Mokhtarani, B.: The UNIFAC–NRF activity coefficient model based on group contribution for partitioning of proteins in aqueous two phase (polymer + salt) systems. J. Chem. Thermodyn. 37, 289–295 (2005)

    Article  CAS  Google Scholar 

  31. Jimenez, Y.P., Galleguillos, H.R.: (Liquid + liquid) equilibrium of (NaClO4 + PEG 4000 + H2O) ternary system at different temperatures. J. Chem. Thermodyn. 42, 419–424 (2010). https://doi.org/10.1016/j.jct.2009.10.001

    Article  CAS  Google Scholar 

  32. Akbari, V., Dehghani, M.R., Borhani, T.N.G., Azarpour, A.: Activity coefficient modelling of aqueous solutions of alkyl ammonium salts using the extended UNIQUAC model. J. Solution Chem. 45, 1434–1452 (2016). https://doi.org/10.1007/s10953-016-0510-x

    Article  CAS  Google Scholar 

  33. Pirahmadi, F., Dehghani, M.R., Behzadi, B., Seyedi, S.M., Rabiee, H.: Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NaNO3 at 25 and 35 °C. Fluid Phase Equilib. 299, 122–126 (2010). https://doi.org/10.1016/j.fluid.2010.09.013

    Article  CAS  Google Scholar 

  34. Pirahmadi, F., Dehghani, M.R., Behzadi, B.: Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NH4Cl at 298.15, 308.15 and 318.15 K. Fluid Phase Equilib. 325, 1–5 (2012). https://doi.org/10.1016/j.fluid.2012.03.026

    Article  CAS  Google Scholar 

  35. Pirahmadi, F., Behzadi, B., Dehghani, M.R.: Experimental measurement and thermodynamic modeling of liquid–liquid equilibrium for 1-pentanol + water + NaNO3 at 298.15 and 308.15 K. Fluid Phase Equilib. 307, 39–44 (2011). https://doi.org/10.1016/j.fluid.2011.05.003

    Article  CAS  Google Scholar 

  36. Hamta, A., Dehghani, M.R., Gholami, M.: Novel experimental data on aqueous two–phase system containing PEG–6000 and Na2CO3 at T = (293.15, 303.15 and 313.15) K. J. Mol. Liq. 241, 144–149 (2017)

    Article  CAS  Google Scholar 

  37. Thormahlen, I., Straub, J., Grigull, U.: Refractive index of water and its dependence on wavelength, temperature, and density. J. Phys. Chem. Ref. Data 14, 933–945 (1985)

    Article  Google Scholar 

  38. Sander, B., Rasmussen, P., Fredenslund, A.: Calculation of solid–liquid equilibria in aqueous solutions of nitrate salts using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1197–1202 (1986). https://doi.org/10.1016/0009-2509(86)87092-0

    Article  CAS  Google Scholar 

  39. Thomsen, K.: Aqueous Electrolytes Model Parameters and Process Simulation. Center for Energy Resources Engineering, Technical University of Denmark, Denmark (1997)

    Google Scholar 

  40. Gao, Y.-L., Peng, Q.-H., Li, Z.-C., Li, Y.-G.: Thermodynamics of ammonium sulfate—polyethylene glycol aqueous two-phase systems. Part1. Experiment and correlation using extended uniquac equation. Fluid Phase Equilib. 63, 157–171 (1991). https://doi.org/10.1016/0378-3812(91)80028-T

    Article  CAS  Google Scholar 

  41. Fowler, R.H., Guggenheim, E.A.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1941)

    Google Scholar 

  42. Foroutan, M., Heidari, N., Mohammadlou, M., Sojahrood, A.J.: Effect of temperature on the (liquid + liquid) equilibrium for aqueous solution of nonionic surfactant and salt: experimental and modeling. J. Chem. Thermodyn. 40, 1077–1081 (2008). https://doi.org/10.1016/j.jct.2008.03.002

    Article  CAS  Google Scholar 

  43. Zana, R.: Partial molal volumes of polymers in aqueous solutions from partial molal volume group contributions. J. Polym. Sci. Part B 18, 121–126 (1980). https://doi.org/10.1002/pol.1980.180180110

    CAS  Google Scholar 

  44. Van, K.D., Krevelen, P.: Properties of Polymers: Their Estimation and Correlation with Chemical Structure. Elsevier, New York (1997)

    Google Scholar 

  45. Sadeghi, R., Jahani, F.: Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. J. Phys. Chem. B. 116, 5234–5241 (2012)

    Article  CAS  Google Scholar 

  46. Larsen, B.L., Rasmussen, P., Fredenslund, A.: A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res. 26, 2274–2286 (1987). https://doi.org/10.1021/ie00071a018

    Article  CAS  Google Scholar 

  47. Haghtalab, A., Peyvandi, K.: Electrolyte–UNIQUAC–NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilib. 281, 163–171 (2009). https://doi.org/10.1016/j.fluid.2009.04.013

    Article  CAS  Google Scholar 

  48. Zafarani-Moattar, M.T., Sadeghi, R., Hamidi, A.A.: Liquid–liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate: experiment and correlation. Fluid Phase Equilib. 219, 149–155 (2004). https://doi.org/10.1016/j.fluid.2004.01.028

    Article  CAS  Google Scholar 

  49. Haghtalab, A., Mokhtarani, B.: The new experimental data and a new thermodynamic model based on group contribution for correlation liquid–liquid equilibria in aqueous two-phase systems of PEG and (K2HPO4 or Na2SO4). Fluid Phase Equilib. 215, 151–161 (2004). https://doi.org/10.1016/j.fluid.2003.08.004

    Article  CAS  Google Scholar 

  50. Zafarani-Moattar, M.T., Sadeghi, R.: Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium dihydrogen phosphate or disodium hydrogen phosphate: experiment and correlation. Fluid Phase Equilib. 181, 95–112 (2001). https://doi.org/10.1016/S0378-3812(01)00373-9

    Article  CAS  Google Scholar 

  51. Zafarani-Moattar, M.T., Sadeghi, R.: Phase diagram data for several PPG + salt aqueous biphasic systems at 25 °C. J. Chem. Eng. Data 50, 947–950 (2005). https://doi.org/10.1021/je049570v

    Article  CAS  Google Scholar 

  52. Cheluget, E.L., Gelinas, S., Vera, J.H., Weber, M.E.: Liquid–liquid equilibrium of aqueous mixtures of poly(propylene glycol) with sodium chloride. J. Chem. Eng. Data 39, 127–130 (1994). https://doi.org/10.1021/je00013a036

    Article  CAS  Google Scholar 

  53. Salabat, A., Dashti, H.: Phase compositions, viscosities and densities of systems PPG425 + Na2SO4 + H2O and PPG425 + (NH4)2SO4 + H2O at 298.15 K. Fluid Phase Equilib. 216, 153–157 (2004). https://doi.org/10.1016/j.fluid.2003.10.006

    Article  CAS  Google Scholar 

  54. Sadeghi, R., Jamehbozorg, B.: Effect of temperature on the salting-out effect and phase separation in aqueous solutions of sodium di-hydrogen phosphate and poly(propylene glycol). Fluid Phase Equilib. 271, 13–18 (2008). https://doi.org/10.1016/j.fluid.2008.06.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Dehghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamta, A., Mohammadi, A., Dehghani, M.R. et al. Liquid–Liquid Equilibrium and Thermodynamic Modeling of Aqueous Two-Phase System Containing Polypropylene Glycol and NaClO4 at T = (288.15 and 298.15) K. J Solution Chem 47, 1–25 (2018). https://doi.org/10.1007/s10953-017-0704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0704-x

Keywords

Profiles

  1. Farzaneh Feyzi