Abstract
In this work the phase equilibrium of an aqueous two phase system (ATPS) containing polypropylene glycol (PPG, molecular weight = 425 kg·mol−1) and NaClO4 was investigated at atmospheric pressure and at 288.15 and 298.15 K. Two phase regions and composition of phases were determined. Our results show that as the temperature increases, the two-phase region expands. Also, the extended UNIQUAC (E-UNIQUAC) equation was used to correlate the equilibrium data. To reduce the number of adjustable parameters, ATPSs composed of PEG and PPG were collected from the literature and simultaneously correlated using the E-UNIQUAC model. Also, the effect of temperature on the liquid–liquid equilibrium (LLE) was considered by using temperature-dependent parameters. In the modeling, two different scenarios were supposed. In the first, polymer and salt were treated as solutes (Case A), while in the second, the pseudo-solvent approach was considered (Case B). The results showed good agreement with experimental data in both cases. The average absolute deviation of the model using Case B was about 0.2% and that for Case A was about 2% in the ATPS composed of PEG. Meanwhile, the reported errors in the ATPS containing PPG for Case A and Case B were almost equal.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- G ex :
-
Excess Gibbs energy
- \( n_{\text{D}}^{\text{o}} \) :
-
Refractive index of water
- A :
-
Debye–Hückel constant
- U ij :
-
Interaction parameters
- b :
-
Debye–Hückel constant
- d :
-
Density (kg·m−3)
- D :
-
Mixed-solvent dielectric constant
- I :
-
Ionic strength on the molal scale
- m :
-
Molality
- M :
-
Molecular weight (kg·mol−1)
- n D :
-
Refractive index
- OF:
-
Objective function
- q :
-
Surface parameter
- r :
-
Volume parameter
- T :
-
Temperature (K)
- V :
-
Molar volume
- w :
-
Weight percent
- x :
-
Mole fraction
- Z :
-
Charge number or coordination number (= 10)
- γ:
-
Activity coefficient
- θ :
-
Surface area fraction
- φ and ϕ :
-
Volume fraction
- I:
-
Bottom phase
- II:
-
Top phase
- S :
-
Number of tie lines
- N :
-
Number of components
- cal:
-
Calculated value
- exp:
-
Experimental value
- UQ:
-
UNIQUAC equation
- DH:
-
Debye–Hückel equation
References
Edahiro, J., Sumaru, K., Takagi, T., Shinbo, T., Kanamori, T.: Photoresponse of an aqueous two-phase system composed of photochromic dextran. Langmuir 22, 5224–5226 (2006). https://doi.org/10.1021/la060318q
Walter, H.: Partitioning in Aqueous Two-Phase System. Theory, Methods, Uses and Applications to Biotechnology. Elsevier, New York (1985)
Zaslavsky, B.Y.: Aqueous Two-Phase Partitioning-Physical Chemistry and Bioanalytical Applications. CRC Press, Boca Rotan (1995)
Zhang, Y., Mao, H., Cremer, P.S.: Probing the mechanism of aqueous two-phase system formation for α-elastin on-chip. J. Am. Chem. Soc. 125, 15630–15635 (2003). https://doi.org/10.1021/ja037869c
Valavi, M., Dehghani, M.R., Feyzi, F.: Calculation of liquid–liquid equilibrium in polymer electrolyte solutions using PHSC–electrolyte equation of state. Fluid Phase Equilib. 341, 96–104 (2013)
Hatti-Kaul, R.: Aqueous Two-Phase Systems Methods and Protocols. Humana Press, Totowa (2000)
Rodrigues, G.D., Lemosa, L.R., de Silva, L.H.M., de Silva, M.C.H.D.: Application of hydrophobic extractant in aqueous two-phase systems for selective extraction of cobalt, nickel and cadmium. J. Chromatogr. A 1279, 13–19 (2013)
Rodríguez, O., Silvério, S.C., Madeira, P.P., Teixeira, J.A., Macedo, E.A.: Physicochemical characterization of the PEG8000–Na2SO4 aqueous two-phase system. Ind. Eng. Chem. Res. 46, 8199–8204 (2007). https://doi.org/10.1021/ie070473f
Show, P.L., Ooi, C.W., Anuar, M.S., Ariff, A., Yusof, Y.A., Chen, S.K., Annuar, M.S., Ling, T.C.: Recovery of lipase derived from Burkholderia cenocepacia ST8 using sustainable aqueous two-phase flotation composed of recycling hydrophilic organic solvent and inorganic salt. Sep. Purif. Technol. 110, 112–118 (2013)
Mohamed-Ali, S., Ling, T.C., Muniandy, S., Tan, Y.S., Raman, J., Sabaratnam, V.: Recovery and partial purification of fibrinolytic enzymes of Auricularia polytricha (Mont.) Sacc by an aqueous two-phase system. Sep. Purif. Technol. 122, 359–366 (2014)
Bulgariu, L., Bulgariu, D.: Selective extraction of Hg(II), Cd(II) and Zn(II) ions from aqueous media by a green chemistry procedure using aqueous two-phase systems. Sep. Purif. Technol. 118, 209–216 (2013)
Hamta, A., Dehghani, M.R.: Application of polyethylene glycol based aqueous two-phase systems for extraction of heavy metals. J. Mol. Liq. 231, 20–24 (2017)
Perumalsamy, M., Murugesan, T.: Phase compositions, molar mass, and temperature effect on densities, viscosities, and liquid−liquid equilibrium of polyethylene glycol and salt-based aqueous two-phase systems. J. Chem. Eng. Data 54, 1359–1366 (2009). https://doi.org/10.1021/je801004n
Regupathi, I., Murugesan, S., Govindarajan, R., Amaresh, S.P., Thanapalan, M.: Liquid−liquid equilibrium of poly(ethylene glycol) 6000 + triammonium citrate + water systems at different temperatures. J. Chem. Eng. Data 54, 1094–1097 (2009). https://doi.org/10.1021/je8008478
Sadeghi, R., Jamehbozorg, B.: The salting-out effect and phase separation in aqueous solutions of sodium phosphate salts and poly(propylene glycol). Fluid Phase Equilib. 280, 68–75 (2009). https://doi.org/10.1016/j.fluid.2009.03.005
Zafarani-Moattar, M.T., Emamian, S., Hamzehzadeh, S.: Effect of temperature on the phase equilibrium of the aqueous two-phase poly(propylene glycol) + tripotassium citrate system. J. Chem. Eng. Data 53(2), 456–461 (2008). https://doi.org/10.1021/je700549u
Salabat, A., Moghadasi, M.A., Zalaghi, P., Sadeghi, R.: (Liquid + liquid) equilibria for ternary mixtures of (polyvinylpyrrolidone + MgSO4 + water) at different temperatures. J. Chem. Thermodyn. 38, 1479–1483 (2006). https://doi.org/10.1016/j.jct.2005.12.013
Sadeghi, R., Rafiei, H.R., Motamedi, M.: Phase equilibrium in aqueous two-phase systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures—experimental and modeling. Thermochim. Acta 451, 163–167 (2006). https://doi.org/10.1016/j.tca.2006.10.002
Voros, N., Proust, P., Fredenslund, A.: Liquid–liquid phase equilibria of aqueous two-phase systems containing salts and polyethylene glycol. Fluid Phase Equilib. 90, 333–353 (1993). https://doi.org/10.1016/0378-3812(93)85071-S
Mishima, K., Nakatani, K., Nomiyama, T., Matsuyama, K., Nagatani, M., Nishikawa, H.: Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and dipotassium hydrogenphosphate. Fluid Phase Equilib. 107, 269–276 (1995). https://doi.org/10.1016/0378-3812(95)02684-7
Patrício, P.D.R., Mageste, A.B., de Lemos, L.R., de Carvalho, R.M.M., da Silva, L.H.M., da Silva, M.C.H.: Phase diagram and thermodynamic modeling of PEO + organic salts + H2O and PPO + organic salts + H2O aqueous two-phase systems. Fluid Phase Equilib. 305, 1–8 (2011). https://dx.doi.org/10.1016/j.fluid.2011.02.013
Zafarani-Moattar, M.T., Hamzehzadeh, S.: Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium succinate or sodium formate. CALPHAD 29, 1–6 (2005)
Rasa, H., Mohsen-Nia, M., Modarress, H.: Phase separation in aqueous two-phase systems containing poly(ethylene glycol) and magnesium sulphate at different temperatures. J. Chem. Thermodyn. 40, 573–579 (2008)
Zafarani-Moattar, M.T., Sadeghi, R.: Measurement and correlation of liquid–liquid equilibria of the aqueous two-phase system polyvinylpyrrolidone–sodium dihydrogen phosphate. Fluid Phase Equilib. 203, 177–191 (2002). https://doi.org/10.1016/S0378-3812(02)00179-6
Salabat, A., Sadeghi, R.: Water activities of ternary mixtures of PPG425 +K2CO3 + H2O and PPG425 + Na2CO3 + H2O at 298.15 K: experiments and correlation. Fluid Phase Equilib. 252, 47–52 (2007)
Claros, M., Taboada, M.E., Galleguillos, H.R., Jimenez, Y.P.: Liquid–liquid equilibrium of the CuSO4 + PEG 4000 + H2O system at different temperatures. Fluid Phase Equilib. 363, 199–206 (2014)
Zafarani-Moattar, M.T., Nasiri, S.: Phase diagrams for liquid–liquid and liquid–solid equilibrium of the ternary poly ethylene glycol di-methyl ether 2000 + tri-sodium phosphate + water system at different temperatures and ambient pressure. CALPHAD 34, 222–231 (2010)
Perumalsamy, M., Murugesan, T.: Prediction of liquid–liquid equilibria for PEG 2000–sodium citrate based aqueous two-phase systems. Fluid Phase Equilib. 244, 52–61 (2006). https://doi.org/10.1016/j.fluid.2006.03.008
Haghtalab, A., Joda, M.: Modification of NRTL–NRF model for computation of liquid–liquid equilibria in aqueous two-phase polymer–salt systems. Fluid Phase Equilib. 278, 20–26 (2009)
Haghtalab, A., Mokhtarani, B.: The UNIFAC–NRF activity coefficient model based on group contribution for partitioning of proteins in aqueous two phase (polymer + salt) systems. J. Chem. Thermodyn. 37, 289–295 (2005)
Jimenez, Y.P., Galleguillos, H.R.: (Liquid + liquid) equilibrium of (NaClO4 + PEG 4000 + H2O) ternary system at different temperatures. J. Chem. Thermodyn. 42, 419–424 (2010). https://doi.org/10.1016/j.jct.2009.10.001
Akbari, V., Dehghani, M.R., Borhani, T.N.G., Azarpour, A.: Activity coefficient modelling of aqueous solutions of alkyl ammonium salts using the extended UNIQUAC model. J. Solution Chem. 45, 1434–1452 (2016). https://doi.org/10.1007/s10953-016-0510-x
Pirahmadi, F., Dehghani, M.R., Behzadi, B., Seyedi, S.M., Rabiee, H.: Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NaNO3 at 25 and 35 °C. Fluid Phase Equilib. 299, 122–126 (2010). https://doi.org/10.1016/j.fluid.2010.09.013
Pirahmadi, F., Dehghani, M.R., Behzadi, B.: Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NH4Cl at 298.15, 308.15 and 318.15 K. Fluid Phase Equilib. 325, 1–5 (2012). https://doi.org/10.1016/j.fluid.2012.03.026
Pirahmadi, F., Behzadi, B., Dehghani, M.R.: Experimental measurement and thermodynamic modeling of liquid–liquid equilibrium for 1-pentanol + water + NaNO3 at 298.15 and 308.15 K. Fluid Phase Equilib. 307, 39–44 (2011). https://doi.org/10.1016/j.fluid.2011.05.003
Hamta, A., Dehghani, M.R., Gholami, M.: Novel experimental data on aqueous two–phase system containing PEG–6000 and Na2CO3 at T = (293.15, 303.15 and 313.15) K. J. Mol. Liq. 241, 144–149 (2017)
Thormahlen, I., Straub, J., Grigull, U.: Refractive index of water and its dependence on wavelength, temperature, and density. J. Phys. Chem. Ref. Data 14, 933–945 (1985)
Sander, B., Rasmussen, P., Fredenslund, A.: Calculation of solid–liquid equilibria in aqueous solutions of nitrate salts using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1197–1202 (1986). https://doi.org/10.1016/0009-2509(86)87092-0
Thomsen, K.: Aqueous Electrolytes Model Parameters and Process Simulation. Center for Energy Resources Engineering, Technical University of Denmark, Denmark (1997)
Gao, Y.-L., Peng, Q.-H., Li, Z.-C., Li, Y.-G.: Thermodynamics of ammonium sulfate—polyethylene glycol aqueous two-phase systems. Part1. Experiment and correlation using extended uniquac equation. Fluid Phase Equilib. 63, 157–171 (1991). https://doi.org/10.1016/0378-3812(91)80028-T
Fowler, R.H., Guggenheim, E.A.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1941)
Foroutan, M., Heidari, N., Mohammadlou, M., Sojahrood, A.J.: Effect of temperature on the (liquid + liquid) equilibrium for aqueous solution of nonionic surfactant and salt: experimental and modeling. J. Chem. Thermodyn. 40, 1077–1081 (2008). https://doi.org/10.1016/j.jct.2008.03.002
Zana, R.: Partial molal volumes of polymers in aqueous solutions from partial molal volume group contributions. J. Polym. Sci. Part B 18, 121–126 (1980). https://doi.org/10.1002/pol.1980.180180110
Van, K.D., Krevelen, P.: Properties of Polymers: Their Estimation and Correlation with Chemical Structure. Elsevier, New York (1997)
Sadeghi, R., Jahani, F.: Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. J. Phys. Chem. B. 116, 5234–5241 (2012)
Larsen, B.L., Rasmussen, P., Fredenslund, A.: A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res. 26, 2274–2286 (1987). https://doi.org/10.1021/ie00071a018
Haghtalab, A., Peyvandi, K.: Electrolyte–UNIQUAC–NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilib. 281, 163–171 (2009). https://doi.org/10.1016/j.fluid.2009.04.013
Zafarani-Moattar, M.T., Sadeghi, R., Hamidi, A.A.: Liquid–liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate: experiment and correlation. Fluid Phase Equilib. 219, 149–155 (2004). https://doi.org/10.1016/j.fluid.2004.01.028
Haghtalab, A., Mokhtarani, B.: The new experimental data and a new thermodynamic model based on group contribution for correlation liquid–liquid equilibria in aqueous two-phase systems of PEG and (K2HPO4 or Na2SO4). Fluid Phase Equilib. 215, 151–161 (2004). https://doi.org/10.1016/j.fluid.2003.08.004
Zafarani-Moattar, M.T., Sadeghi, R.: Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium dihydrogen phosphate or disodium hydrogen phosphate: experiment and correlation. Fluid Phase Equilib. 181, 95–112 (2001). https://doi.org/10.1016/S0378-3812(01)00373-9
Zafarani-Moattar, M.T., Sadeghi, R.: Phase diagram data for several PPG + salt aqueous biphasic systems at 25 °C. J. Chem. Eng. Data 50, 947–950 (2005). https://doi.org/10.1021/je049570v
Cheluget, E.L., Gelinas, S., Vera, J.H., Weber, M.E.: Liquid–liquid equilibrium of aqueous mixtures of poly(propylene glycol) with sodium chloride. J. Chem. Eng. Data 39, 127–130 (1994). https://doi.org/10.1021/je00013a036
Salabat, A., Dashti, H.: Phase compositions, viscosities and densities of systems PPG425 + Na2SO4 + H2O and PPG425 + (NH4)2SO4 + H2O at 298.15 K. Fluid Phase Equilib. 216, 153–157 (2004). https://doi.org/10.1016/j.fluid.2003.10.006
Sadeghi, R., Jamehbozorg, B.: Effect of temperature on the salting-out effect and phase separation in aqueous solutions of sodium di-hydrogen phosphate and poly(propylene glycol). Fluid Phase Equilib. 271, 13–18 (2008). https://doi.org/10.1016/j.fluid.2008.06.018
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hamta, A., Mohammadi, A., Dehghani, M.R. et al. Liquid–Liquid Equilibrium and Thermodynamic Modeling of Aqueous Two-Phase System Containing Polypropylene Glycol and NaClO4 at T = (288.15 and 298.15) K. J Solution Chem 47, 1–25 (2018). https://doi.org/10.1007/s10953-017-0704-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-017-0704-x