Turing A (1937) On Computable Numbers, with an Application to theEntscheidungsproblem. Proc Lond Math Soc, Second Ser, London 42:230–265. Erratum in 43:544–546
MathSciNet
Google Scholar
Lewis HR, Christos PH (1997) Elements of the Theory of Computation, 2ndedn. Prentice Hall, Upper Saddle River
Google Scholar
Landauer R (1961) Irreversibility and heat generation in the computingprocess. IBMJ Res Dev 5:183
MathSciNet
MATH
Google Scholar
Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev17(6):525–532
MATH
Google Scholar
Li M, Vitanyi P (1996) Reversibility and Adiabatic Computation: Trading Time andSpace for Energy. Proc Roy Soc Lond, Series A 452:769–789. Preprint quant-ph/9703022
Google Scholar
Crescenzi P, Christos PH (1995) Reversible simulation of space‐boundedcomputations. Theor Comput Sci 143(1):159–165
MATH
Google Scholar
Wolfram S (1984) Universality and complexity in cellular automata. Phys D10:1–35
MathSciNet
Google Scholar
Blum L, Cucker F, Shub M, Smale S (1996) Complexity and Real Computation:A Manifesto. Int J Bifurc Chaos 6(1):3–26
MathSciNet
MATH
Google Scholar
Feynman RP (1982) Simulating physics with computers. Int J Theor Phys21(6–7):467–488
MathSciNet
Google Scholar
Benioff P (1982) Quantum mechanical models of Turing machines that dissipateno energy. Phys Rev Lett 48:1581
MathSciNet
ADS
Google Scholar
Deutsch D (1985) Quantum theory, the Church–Turing principle and theuniversal quantum computer. Proc Roy Soc A 400:97–117
MathSciNet
ADS
MATH
Google Scholar
Gruska J (1999) Quantum Computing. McGraw–Hill,Maidenhead
Google Scholar
Nielsen M, Chuang I (2000) Quantum Computation and QuantumInformation. Cambridge University Press, Cambridge
MATH
Google Scholar
Jaeger G (2006) Quantum Information: An Overview. Springer,Berlin
Google Scholar
Reif JH (2007) Quantum Information Processing: Algorithms, Technologies andChallenges In: Eshaghian-Wilner MM (ed) Nano‐scale and Bio‐inspired Computing. Wiley, Malden
Google Scholar
Reif JH (1979) Complexity of the Mover’s Problem and Generalizations. 20thAnnual IEEE Symposium on Foundations of Computer Science, San Juan, Puerto Rico, October pp 421–427; (1987) In: Schwartz J (ed) Planning,Geometry and Complexity of Robot Motion. Ablex Pub Norwood, NJ, pp 267–281
Google Scholar
Canny J (1988) Some algebraic and geometric computations in PSPACE In: Cole R(ed) Proceedings of the 20th Annual ACM Symposium on the Theory of Computing. ACM Press, Chicago, IL, pp 460–467
Google Scholar
Schwartz JT, Sharir M (1983) On the piano movers problem: I the case ofa two‐dimensional rigid polygonal body moving amidst polygonal barriers. Comm Pure Appl Math 36:345–398
MathSciNet
MATH
Google Scholar
Hopcroft JE, Schwartz JT, Sharir M (1984) On the Complexity of Motion Planningfor Multiple Independent Objects: PSPACE Hardness of the Warehouseman’s Problem. Int J Robot Res 3(4):76–88
Google Scholar
Bennett CH (1982) The thermodynamics of computation –a review. Int J Theor Phys21(12):905–940. http://www.research.ibm.com/people/b/bennetc/bennettc1982666c3d53.pdf
Google Scholar
Bennett CH (2003) Notes on Landauer’s principle, reversible computation, andMaxwell’s Demon. Stud History Philos Mod Phys 34:501–510. eprint physics/0210005:http://xxx.lanl.gov/abs/physics/0210005
Adamatzky A (ed) (2001) Collision‐based computing. Springer,London
Google Scholar
Squier R, Steiglitz K (1994) Programmable parallel arithmetic in cellularautomata using a particle model. Complex Syst 8:311–323
MathSciNet
MATH
Google Scholar
Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys21:219–253
MathSciNet
MATH
Google Scholar
Adamatzky AI (1996) On the particle‐like waves in the discrete model ofexcitable medium. Neural Netw World 1:3–10
Google Scholar
Adamatzky AI (1998) Universal dynamical computation in multidimensionalexcitable lattices. Int J Theor Phys 37:3069–3108
MathSciNet
MATH
Google Scholar
Jakubowski MH, Steiglitz K, Squier R (1998) State transformations of collidingoptical solitons and possible application to computation in bulk media. Phys Rev E58:6752–6758
ADS
Google Scholar
Jakubowski MH, Steiglitz K, Squier R (2001) Computing with solitons:a review and prospectus, Collision‐based computing. Springer, London, pp 277–297
Google Scholar
Feynman RP (1963) In: Feynman RP, Leighton RB, Sands M (eds) Ratchet and Pawl,The Feynman Lectures on Physics, vol 1, Chapter 46. Addison–Wesley, Reading
Google Scholar
Shapiro E (1999) A Mechanical Turing Machine: Blueprint fora Biomolecular Computer. Fifth International Meeting on DNA-Based Computers at the Massachusetts Institute of Technology, Proc DNA Based ComputersV. Cambridge, MA, pp 14–16
Google Scholar
Reif JH, Sharir M (1994) Motion Planning in the Presence of MovingObstacles. 26th Annual IEEE Symposium on Foundations of Computer Science, Portland, OR, October 1985 pp 144–154; J ACM (JACM)41(4):764–790
Google Scholar
Canny J, Reif JH (1987) New Lower Bound Techniques for Robot Motion PlanningProblems. 28th Annual IEEE Symposium on Foundations of Computer Science, Los Angeles, CA, October pp 49–60
Google Scholar
Canny J, Donald B, Reif JH, Xavier P (1993) On the Complexity of KinodynamicPlanning. 29th Annual IEEE Symposium on Foundations of Computer Science, White Plains, NY, October (1988) pp 306–316; Kinodynamic MotionPlanning. J ACM 40(5):1048–1066
MathSciNet
MATH
Google Scholar
Reif JH, Wang H (1998) The Complexity of the Two DimensionalCurvature‐Constrained Shortest‐Path Problem. Third International Workshop on Algorithmic Foundations of Robotics (WAFR98). Peters AK Ltd,Houston, pp 49–57
Google Scholar
Reif JH, Tygar D, Yoshida A (1994) The Computability and Complexity of OpticalBeam Tracing. 31st Annual IEEE Symposium on Foundations of Computer Science, St Louis, MO, October (1990) pp 106–114; The Computability andComplexity of Ray Tracing. Discrete Comput Geometry 11:265–287
MathSciNet
MATH
Google Scholar
Tate SR, Reif JH (1993) The Complexity of N-body Simulation. Proceedings ofthe 20th Annual Colloquium on Automata, Languages and Programming (ICALP’93), Lund, pp 162–176
Google Scholar
Reif JH, Sun Z (2003) The Computational Power of Frictional MechanicalSystems. Third International Workshop on Algorithmic Foundations of Robotics, (WAFR98). Peters AK Ltd, Houston, Texas, Mar 5–7 1998,pp 223–236; On Frictional Mechanical Systems and Their Computational Power. SIAM J Comput (SICOMP)32(6):1449–1474
MathSciNet
MATH
Google Scholar
Moore C (1990) Undecidability and Unpredictability in Dynamical Systems. PhysRev Lett 64:2354–2357
MathSciNet
ADS
MATH
Google Scholar
Moore C (1991) Generalized Shifts: Undecidability and Unpredictability inDynamical Systems. Nonlinearity 4:199–230
MathSciNet
ADS
MATH
Google Scholar
Munakata T, Sinha S, Ditto WL (2002) Chaos Computing: Implementation ofFundamental Logical Gates by Chaotic Elements. IEEE Trans Circuits Syst-I Fundam Theory Appl 49(11):1629–1633
Google Scholar
Sinha S, Ditto (1999) Computing with distributed chaos. Phys Rev E Stat PhysPlasmas Fluids Relat Interdiscip Top 60(1):363–77
Google Scholar
Knott CG (ed) (1915) Napier tercentenary memorial volume. The Royal Society ofEdinburgh, Longmans, Green, London
MATH
Google Scholar
Hartree DR (1950) Calculating Instruments and Machines. Cambridge UniversityPress, Cambridge
MATH
Google Scholar
Engineering Research Associates Staff (1950) High‐Speed ComputingDevices. McGraw–Hill, New York
Google Scholar
Chase GC (1980) History of Mechanical Computing Machinery. Ann Hist Comput2(3):198–226
MathSciNet
MATH
Google Scholar
Martin E (1992) The Calculating Machines. The MIT Press, Cambridge,Massachusetts
MATH
Google Scholar
Davis M (2000) The Universal Computer: The Road from Leibniz toTuring. Norton, New York
Google Scholar
Norman JM (ed) (2002) The Origins of Cyberspace: From Gutenberg to theInternet: a sourcebook on the history of information technology. Norman Publishing, Novato
Google Scholar
Horsburgh EM (ed) (1914) Modern Instruments and Methodsof Calculation: a Handbook of the Napier Tercentenary Exhibition, London, G Bell and Sons, Edinburgh, The Royal Society of Edinburgh, p 223. Reprinted 1982
Google Scholar
Turck JAV (1921) Origin of Modern Calculating Machines. The Western Society ofEngineers, Chicago
Google Scholar
Svoboda A (1948) Computing Mechanisms and Linkages. McGraw–Hill,Columbus
Google Scholar
Soroka WA (1954) Analog Methods in Computation andSimulation. McGraw–Hill
Google Scholar
Freeth T, Bitsakis Y, Moussas X, Seiradakis JH, Tselikas A, Mangou H,Zafeiropoulou M, Hadland R, Bate D, Ramsey A, Allen M, Crawley A, Hockley P, Malzbender T, Gelb D, Ambrisco W, Edmunds MG (2006) Decoding the ancientGreek astronomical calculator known as the Antikythera Mechanism. Nature 444:587–591
ADS
Google Scholar
de Morin H (1913) Les appariéls d’intégration: intégrateurs simples etcompasés, planimètres, intégromètres, intégraphes et courbes intégrales, analyse harmonique et analyseurs. Gauthier-Villars, Paris,pp 162–171
Google Scholar
Thomson W (later known as Lord Kelvin) (1878) Harmonic Analyzer. Proc Roy SocLond 27:371–373
MATH
Google Scholar
Henrici (1894) Philos Mag 38:110
MATH
Google Scholar
Lord Kelvin (1878) Harmonic analyzer and synthesizer. Proc Roy Soc27:371
Google Scholar
Miller D (1916) The Henrici harmonic analyzer and devices for extending andfacilitating its use. J Franklin Inst 181:51–81; 182:285–322
Google Scholar
Fisher EG (1911) Tide‐predicting machine. Eng News66:69–73
Google Scholar
Bush V (1931) The differential analyzer: A new machine for solvingdifferential equations. J Franklin Inst 212:447
Google Scholar
Bernal JD (1964) The Structure of Liquids. Proc Roy Soc Lond Ser A 280,299
ADS
Google Scholar
Finney JL (1970) Random Packings and the Structure of Simple Liquids. I TheGeometry of Random Close Packing. Proc Royal Soc London, Ser A, Math Phys Sci 319(1539):479–493
Google Scholar
Bragg L, Nye JF (1947) A dynamical model of a crystalstructure. Proc R Soc A 190:474–481
ADS
Google Scholar
Bragg L, Lomer WM (1948) A dynamical model of a crystal structureII. Proc R Soc A 196:171–181
ADS
Google Scholar
Corcoran SG, Colton RJ, Lilleodden ET, Gerberich WW (1997) Phys Rev B190:474
Google Scholar
Adamatzky A, De Lacy BC, Asai T (2005) Reaction‐DiffusionComputers. Elsevier, Amsterdam
Google Scholar
Adamatzky AI (1994) Constructing a discrete generalized Voronoi diagramin reaction‐diffusion media. Neural Netw World 6:635–643
Google Scholar
da Vinci L (1493) Codex Madrid I
Google Scholar
Napier J (1614) Mirifici logarithmorum cannonis descriptio (the description ofthe wonderful canon of logarithms). Hart, Edinburgh
Google Scholar
Oughtred W (1632) Circles of Proportion and the Horizontal Instrument. WilliamForster, London
Google Scholar
Pascal E (1645) Lettre dédicatoire à Monseigneur le Chancelier sur le sujet dela machine nouvellement inventée par le sieur BP pour faire toutes sortes d’opérations d’arithmétique par un mouvement réglé sans plume ni jetons, suivied’un avis nécessaire à ceux qui auront curiosité de voir ladite machine et de s’en servir
Google Scholar
Babbage C (1822) On Machinery for Calculating and Printing MathematicalTables. Edinburgh Philos J VII:274–281
Google Scholar
Babbage C (1822) Observations on the application of machinery to thecomputation of mathematical tables. Memoirs of the Astronomical Society 1:311–314
Google Scholar
Babbage C (1826) On a Method of expressing by Signs the Action ofMachinery. Philosophical Trans Royal Soc London 116(III):250–265
ADS
Google Scholar
Ludgate P (1909) On a proposed analytical engine. Sci Proc Roy Dublin Soc12:77–91
Google Scholar
Lindgren M (1990) Glory and Failure: Difference Engines of Johann Muller,Charles Babbage and Georg and Edvard Scheutz. MIT Press, Cambridge
Google Scholar
Swade D (1991) Charles Babbage and His Calculating Engines. Michigan StateUniversity Press, East Lensing
Google Scholar
Lovelace A (1843) Sketch of the analytical engine invented by CharlesBabbage. Translation of: Sketch of the Analytical Engine by Menabrea LF with Ada’s notes and extensive commentary. Esq Sci Mem3:666–731
Google Scholar
Cohen BI, Welch GW (1999) Makin’ Numbers: Howard Aiken and the Computer. MITPress, Cambridge
Google Scholar
Boole G (1847) Mathematical Analysis ofLogic. Pamphlet
Google Scholar
Boole G (1854) An Investigation of the Laws of Thought, on Which are Foundedthe Mathematical Theories of Logic and Probabilities. Macmillan, Cambridge
Google Scholar
Shannon C (1938) A Symbolic Analysis of Relay and SwitchingCircuits. Trans Am Inst Electr Eng 57:713–719
Google Scholar
Jevons SW (1870) On the Mechanical Performance of Logical Inference. PhilosTrans Roy Soc, Part II 160:497–518
Google Scholar
Jevons SW (1873) The Principles of Science. A Treatise on Logic andScientific Method. Macmillan, London
Google Scholar
Hamer D, Sullivan G, Weierud F (1998) Enigma Variations: an Extended Family ofMachines. Cryptologia 22(3):211–229
Google Scholar
Lehmer DH (1928) The mechanical combination of linear forms. Am Math Mon35:114–121
MathSciNet
MATH
Google Scholar
Shamir A (1999) Method and apparatus for factoring large numbers withoptoelectronic devices. patent 475920, awarded 08/05/2003
Google Scholar
Shamir A (1999) Factoring large numbers with the TWINKLE device. CryptographicHardware and Embedded Systems (CHES) 1999. LNCS, vol 1717. Springer, New York, pp 2–12
Google Scholar
Lenstra AK, Shamir A (2000) Analysis and optimization of the TWINKLE factoringDevice. Proc Eurocrypt 2000. LNCS, vol 1807. Springer, pp 35–52
Google Scholar
Madou MJ (2002) Fundamentals of Microfabrication: The Science ofMiniaturization, 2nd edn. CRC Press, Boca Raton
Google Scholar
Plummer D, Dalton LJ, Peter F (1999) The recodable locking device. Commun ACM42(7):83–87
Google Scholar
Wang H (1963) Dominoes and the AEA Case of the Decision Problem. In: J Fox(ed) Mathematical Theory of Automata. Polytechnic Press, Brooklyn, pp 23–55
Google Scholar
Branko GS, Shepard GC (1987) Tilings and Patterns. H Freeman,Gordonsville. Chapter 11
Google Scholar
Berger R (1966) The Undecidability of the Domino Problem. Mem Am Math Soc66:1–72
Google Scholar
Lewis HR, Papadimitriou CH (1981) Elements of the Theory ofComputation. Prentice-Hall, Upper Saddle River, pp 296–300, 345–348
MATH
Google Scholar
Winfree E (1998) Simulations of Computing by Self‐Assembly. In:Proceedings of the Fourth Annual Meeting on DNA Based Computers, held at the University of Pennsylvania. pp 16–19
Google Scholar
Xia Y, Whitesides GM (1998) Soft Lithography. Annu Rev Mater Sci28:153–184
ADS
Google Scholar
Rothemund PWK (2000) Using lateral capillary forces to compute byself‐assembly. Proc Nat Acad Sci (USA) 97:984–989
ADS
Google Scholar
Seeman NC (2004) Nanotechnology and the Double Helix. Sci Am290(6):64–75
Google Scholar
Reif JH, LaBean TH (2007) Nanostructures and Autonomous Devices Assembledfrom DNA In: Eshaghian-Wilner MM (ed) Nano‐scale and Bio‐inspired Computing. Wiley, Malden
Google Scholar
Adleman LM (1994) Molecular computation of solutions to combinatorialproblems. Science 266(11):1021–1024
ADS
Google Scholar
Adleman L (1998) Computing with DNA. Sci Am279(2):34–41
Google Scholar
Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design andSelf‐Assembly of Two‐Dimensional DNA Crystals. Nature 394:539–544
ADS
Google Scholar
Yan H, LaBean TH, Feng L, Reif JH (2003) Directed Nucleation Assembly ofBarcode Patterned DNA Lattices. PNAS 100(14):8103–8108
ADS
Google Scholar
Rothemund PWK (2006) Folding DNA to create nanoscale shapes andpatterns. Nature 440:297–302
ADS
Google Scholar
Mao C, LaBean TH, Reif JH, Seeman (2000) Logical Computation UsingAlgorithmic Self‐Assembly of DNA Triple‐Crossover Molecules. Nature 407:493–495
ADS
Google Scholar
Yan H, Feng L, LaBean TH, Reif J (2003) DNA Nanotubes, Parallel MolecularComputations of Pairwise Exclusive-Or (XOR) Using DNA String Tile Self‐Assembly. J Am Chem Soc (JACS)125(47):14246–14247
Google Scholar
Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic Self‐Assemblyof DNA Sierpinski Triangles. PLoS Biology 2(12), e424.doi:10.1371/journal.pbio.0020424
Google Scholar
Yin P, Yan H, Daniel XG, Turberfield AJ, Reif JH (2004)A Unidirectional DNA Walker Moving Autonomously Along a Linear Track. Angew Chem [Int Ed] 43(37):4906–4911
Google Scholar
Reif JH, Sahu S (2008) Autonomous Programmable DNA Nanorobotic Devices UsingDNAzymes, John H. Reif and Sudher Sahu. In: Garzon M, Yan H (eds) Autonomous Programmable DNA Nanorobotic Devices Using DNAzymes, 13th InternationalMeeting on DNA Computing (DNA 13). Lecture Notes for Computer Science (LNCS). Springer, Berlin. To appear in special Journal Issue on Self-Assembly,Theoretical Computer Science (TCS)
Google Scholar
Reif JH, LaBean TH (2007) Autonomous Programmable Biomolecular Devices UsingSelf‐Assembled DNA Nanostructures. Comm ACM (CACM) 50(9):46–53. Extended version:http://www.cs.duke.edu/%7Ereif/paper/AutonomousDNA/AutonomousDNA.pdf
Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol2:275–284
ADS
Google Scholar