Dehay B, Bezard E (2011) New animal models of Parkinson’s disease. Mov Disord 26(7):1198–1205
Article
PubMed
Google Scholar
Tuszynski MH (2007) Nerve growth factor gene therapy in Alzheimer disease. Alzheimer Dis Assoc Disord 21(2):179–189
Article
PubMed
CAS
Google Scholar
Porras G et al (2012) PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest 122(11): 3977–3989
Article
PubMed
CAS
Google Scholar
Ahmed MR et al (2010) Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson’s disease. Sci Transl Med 2(28):28ra28
Article
PubMed
Google Scholar
Meissner WG et al (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10(5):377–393
Article
PubMed
CAS
Google Scholar
Tuszynski MH et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11(5):551–555
Article
PubMed
CAS
Google Scholar
Marks WJ Jr et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9(12):1164–1172
Article
PubMed
CAS
Google Scholar
Lundberg C et al (2008) Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther 8(6):461–473
Article
PubMed
CAS
Google Scholar
Kordower JH et al (1999) Lentiviral gene transfer to the nonhuman primate brain. Exp Neurol 160(1):1–16
Article
PubMed
CAS
Google Scholar
Kordower JH (2003) In vivo gene delivery of glial cell line—derived neurotrophic factor for Parkinson’s disease. Ann Neurol 53(Suppl 3):S120–S132, discussion S132–4
Article
PubMed
CAS
Google Scholar
Gash DM, Gerhardt GA, Hoffer BJ (1998) Effects of glial cell line-derived neurotrophic factor on the nigrostriatal dopamine system in rodents and nonhuman primates. Adv Pharmacol 42:911–915
Article
PubMed
CAS
Google Scholar
Kordower JH et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290(5492):767–773
Article
PubMed
CAS
Google Scholar
Palfi S et al (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22(12):4942–4954
PubMed
CAS
Google Scholar
Jarraya B et al (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 1(2):2ra4
Article
PubMed
Google Scholar
Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2(8):577–588
Article
PubMed
CAS
Google Scholar
Fahn S (2006) Levodopa in the treatment of Parkinson’s disease. J Neural Transm Suppl (71):1–15
Google Scholar
Guigoni C, Doudnikoff E, Li Q, Bloch B, Bezard E (2007) Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol Dis 26(2):452–463
Article
PubMed
CAS
Google Scholar
Bezard E et al (2005) L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis 18(2): 323–335
Article
PubMed
CAS
Google Scholar
Fasano S et al (2010) Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci USA 107(50):21824–21829
Article
PubMed
CAS
Google Scholar
Pearce RK, Jackson M, Smith L, Jenner P, Marsden CD (1995) Chronic L-DOPA administration induces dyskinesias in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Mov Disord 10(6):731–740
Article
PubMed
CAS
Google Scholar
Gold SJ et al (2007) RGS9-2 negatively modulates L-3,4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson’s disease. J Neurosci 27(52):14338–14348
Article
PubMed
CAS
Google Scholar
Nash JE, Johnston TH, Collingridge GL, Garner CC, Brotchie JM (2005) Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson’s disease and L-DOPA-induced dyskinesia. FASEB J 19(6):583–585
PubMed
CAS
Google Scholar
Palfi S et al (2007) Expression of mutated huntingtin fragment in the putamen is sufficient to produce abnormal movement in non-human primates. Mol Ther 15(8): 1444–1451
Article
PubMed
CAS
Google Scholar
Kwon I, Schaffer DV (2008) Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 25(3): 489–499
Article
PubMed
CAS
Google Scholar
Zhang H, Xie J, Xie Q, Wilson JM, Gao G (2009) Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production. Hum Gene Ther 20(9):922–929
Article
PubMed
CAS
Google Scholar
Gao G, Vandenberghe LH, Wilson JM (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5(3):285–297
Article
PubMed
CAS
Google Scholar
Gao GP et al (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 99(18):11854–11859
Article
PubMed
CAS
Google Scholar
Vandenberghe LH, Wilson JM, Gao G (2009) Tailoring the AAV vector capsid for gene therapy. Gene Ther 16(3):311–319
Article
PubMed
CAS
Google Scholar
Bankiewicz KS et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164(1):2–14
Article
PubMed
CAS
Google Scholar
Bankiewicz KS et al (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14(4):564–570
Article
PubMed
CAS
Google Scholar
Forsayeth JR et al (2006) A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 14(4):571–577
Article
PubMed
CAS
Google Scholar
Hadaczek P et al (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18(8):1458–1461
Article
PubMed
CAS
Google Scholar
Muramatsu S et al (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13(3):345–354
Article
PubMed
CAS
Google Scholar
Lozano AM, Dostrovsky J, Chen R, Ashby P (2002) Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 1(4):225–231
Article
PubMed
Google Scholar
Emborg ME et al (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27(3):501–509
Article
PubMed
CAS
Google Scholar
Feigin A et al (2007) Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease. Proc Natl Acad Sci USA 104(49):19559–19564
Article
PubMed
CAS
Google Scholar
LeWitt PA et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10(4):309–319
Article
PubMed
CAS
Google Scholar
Eslamboli A et al (2005) Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25(4):769–777
Article
PubMed
CAS
Google Scholar
Kells AP et al (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30(28):9567–9577
Article
PubMed
CAS
Google Scholar
Kordower JH et al (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60(6):706–715
Article
PubMed
CAS
Google Scholar
Berton O et al (2009) Striatal overexpression of DeltaJunD resets L-DOPA-induced dyskinesia in a primate model of Parkinson disease. Biol Psychiatry 66(6):554–561
Article
PubMed
CAS
Google Scholar
Ciron C et al (2009) Human alpha-iduronidase gene transfer mediated by adeno-associated virus types 1, 2, and 5 in the brain of nonhuman primates: vector diffusion and biodistribution. Hum Gene Ther 20(4):350–360
Article
PubMed
CAS
Google Scholar
McFarland NR, Lee JS, Hyman BT, McLean PJ (2009) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J Neurochem 109(3):838–845
Article
PubMed
CAS
Google Scholar
Taymans JM et al (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18(3):195–206
Article
PubMed
CAS
Google Scholar
Colle MA et al (2010) Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Hum Mol Genet 19(1):147–158
Article
PubMed
CAS
Google Scholar
Dodiya HB et al (2010) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18(3):579–587
Article
PubMed
CAS
Google Scholar
Hadaczek P et al (2009) Transduction of nonhuman primate brain with adeno-associated virus serotype 1: vector trafficking and immune response. Hum Gene Ther 20(3):225–237
Article
PubMed
CAS
Google Scholar
Markakis EA et al (2010) Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol Ther 18(3):588–593
Article
PubMed
CAS
Google Scholar
Sanchez CE et al (2011) Recombinant adeno-associated virus type 2 pseudotypes: comparing safety, specificity, and transduction efficiency in the primate striatum. Laboratory investigation. J Neurosurg 114(3):672–680
Article
PubMed
Google Scholar
Yasuda T et al (2007) Neuronal specificity of alpha-synuclein toxicity and effect of Parkin co-expression in primates. Neuroscience 144(2):743–753
Article
PubMed
CAS
Google Scholar
Inagaki K et al (2007) DNA palindromes with a modest arm length of greater, similar 20 base pairs are a significant target for recombinant adeno-associated virus vector integration in the liver, muscles, and heart in mice. J Virol 81(20):11290–11303
Article
PubMed
CAS
Google Scholar
Zhang H et al (2011) Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 19(8):1440–1448
Article
PubMed
CAS
Google Scholar
Foust KD et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65
Article
PubMed
CAS
Google Scholar
Duque S et al (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17(7):1187–1196
Article
PubMed
CAS
Google Scholar
Dominguez E et al (2011) Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 20(4):681–693
Article
PubMed
CAS
Google Scholar
Foust KD et al (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28(3):271–274
Article
PubMed
CAS
Google Scholar
Spampanato C et al (2011) Efficacy of a combined intracerebral and systemic gene delivery approach for the treatment of a severe lysosomal storage disorder. Mol Ther 19(5):860–869
Article
PubMed
CAS
Google Scholar
Gray SJ et al (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19(6):1058–1069
Article
PubMed
CAS
Google Scholar
Bevan AK et al (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19(11):1971–1980
Article
PubMed
CAS
Google Scholar
Samaranch L et al (2012) Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther 23(4):382–389
Article
PubMed
CAS
Google Scholar
Dehay B, Dalkara D, Dovero S, Li Q, Bezard E (2012) Systemic scAAV9 variant mediates brain transduction in newborn rhesus macaques. Sci Rep 2:253
Article
PubMed
Google Scholar
Mattar CN et al (2013) Systemic delivery of scAAV9 in fetal macaques facilitates neuronal transduction of the central and peripheral nervous systems. Gene Ther 20(1):69–83
Article
PubMed
CAS
Google Scholar
Federici T et al (2012) Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther 19(8):852–859
Article
PubMed
CAS
Google Scholar
Xie J et al (2011) MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol Ther 19(3):526–535
Article
PubMed
CAS
Google Scholar
Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20(4):699–708
Article
PubMed
CAS
Google Scholar
Gray SJ et al (2010) Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood–brain barrier (BBB). Mol Ther 18(3):570–578
Article
PubMed
CAS
Google Scholar
Asokan A et al (2010) Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28(1):79–82
Article
PubMed
CAS
Google Scholar
Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Jude Samulski R (2013) Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20(4):450–459
Article
PubMed
CAS
Google Scholar
Bielicki J, McIntyre C, Anson DS (2010) Comparison of ventricular and intravenous lentiviral-mediated gene therapy for murine MPS VII. Mol Genet Metab 101(4):370–382
Article
PubMed
CAS
Google Scholar
Passini MA et al (2003) Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. J Virol 77(12):7034–7040
Article
PubMed
CAS
Google Scholar
Regev L, Ezrielev E, Gershon E, Gil S, Chen A (2010) Genetic approach for intracerebroventricular delivery. Proc Natl Acad Sci USA 107(9):4424–4429
Article
PubMed
CAS
Google Scholar
Lam MF, Thomas MG, Lind CR (2011) Neurosurgical convection-enhanced delivery of treatments for Parkinson’s disease. J Clin Neurosci 18(9):1163–1167
Article
PubMed
Google Scholar
Bobo RH et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080
Article
PubMed
CAS
Google Scholar
Cunningham J et al (2008) Biodistribution of adeno-associated virus type-2 in nonhuman primates after convection-enhanced delivery to brain. Mol Ther 16(7):1267–1275
Article
PubMed
CAS
Google Scholar
Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS (2008) Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics 5(1):123–127
Article
PubMed
Google Scholar
Salegio EA, Samaranch L, Kells AP, Forsayeth J, Bankiewicz K (2012) Guided delivery of adeno-associated viral vectors into the primate brain. Adv Drug Deliv Rev 64(7):598–604
Article
PubMed
CAS
Google Scholar
Chen ZJ et al (2004) A realistic brain tissue phantom for intraparenchymal infusion studies. J Neurosurg 101(2):314–322
Article
PubMed
Google Scholar
Fatouros PP et al (2006) In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 240(3):756–764
Article
PubMed
Google Scholar
Krauze MT et al (2005) Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg 103(5): 923–929
Article
PubMed
Google Scholar
Rosenbluth KH et al (2011) Design of an in-dwelling cannula for convection-enhanced delivery. J Neurosci Methods 196(1):118–123
Article
PubMed
Google Scholar
Sanftner LM et al (2005) AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp Neurol 194(2):476–483
Article
PubMed
CAS
Google Scholar
Saito R et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196(2):381–389
Article
PubMed
CAS
Google Scholar
Yin D et al (2011) Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage 54(Suppl 1):S196–S203
Article
PubMed
CAS
Google Scholar
Eberling JL et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983
Article
PubMed
CAS
Google Scholar