Skip to main content
Log in

Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: a preliminary study

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate corneal innervation and inflammatory cell infiltration using in vivo confocal microscopy (IVCM) and to correlate these findings with subjective symptoms of dry eye, as measured by the Ocular Surface Disease Index (OSDI) in patients with non-Sjögren’s (NSDE) and Sjögren’s syndrome dry eyes (SSDE).

Methods

Central corneal images were prospectively captured from 10 age-matched healthy control eyes, 24 eyes with clinically diagnosed NSDE and 44 eyes with clinically diagnosed SSDE, using IVCM (HRT III RCM). Density, tortuosity and reflectivity of corneal nerves, presence of inflammatory dendritic cells (DCs) and OSDI scores were evaluated.

Results

Images obtained by IVCM from 78 eyes were analyzed. The density of nerve fibers was 1562 ± 996 μm/frame in the SSDE group, 2150 ± 1015 μm/frame in the NSDE group and 2725 ± 687 μm/frame in the control group (P < 0.05, ANOVA). In comparison to the control group, the density of nerve fibers was decreased in the SSDE (P < 0.001) and the NSDE groups (P = 0.06), with increased nerve tortuosity and decreased reflectivity in both groups (both P < 0.05). The density of DCs was 71.65 ± 72.54 cells/mm2 in the SSDE group, 40.33 ± 31.63 cells/mm2 in the NSDE group and 27.53 ± 5.58 cells/mm2 in the control group (P < 0.05, ANOVA). In comparison to the control group, the density of DCs was increased in the SSDE (P < 0.001) and the NSDE groups (P = 0.07). Significant correlations were found between the nerve density and DC density (r = −0.57, P < 0.001), between the nerve density and OSDI scores (r = −0.91, P < 0.001) and between the nerve reflectivity and OSDI scores (r = −0.75, P < 0.001).

Conclusions

The corneas of eyes affected with NSDE and SSDE are characterized by alterations in corneal innervation and infiltration of inflammatory DCs. Corneal nerve density and reflectivity are correlated with severity of subjective dry eye symptoms, as measured by OSDI score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alhatem A, Cavalcanti B, Hamrah P (2012) In vivo confocal microscopy in dry eye disease and related conditions. Semin Ophthalmol 27:138–148. doi:10.3109/08820538.2012.711416

    Article  PubMed  PubMed Central  Google Scholar 

  2. Courtin R, Pereira B, Naughton G et al (2016) Prevalence of dry eye disease in visual display terminal workers: a systematic review and meta-analysis. BMJ Open 6:e009675. doi:10.1136/bmjopen-2015-009675

    Article  PubMed  PubMed Central  Google Scholar 

  3. Herrero-Vanrell R, Peral A (2007) International dry eye Workshop (DEWS). Update of the disease. Arch Soc Esp Oftalmol 82:733–734

    CAS  PubMed  Google Scholar 

  4. Stern ME, Beuerman RW, Fox RI et al (1998) The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea 17:584–589

    Article  CAS  PubMed  Google Scholar 

  5. Stern ME, Gao J, Siemasko KF et al (2004) The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res 78:409–416

    Article  CAS  PubMed  Google Scholar 

  6. Rolando M (2001) Sjogren’s syndrome as seen by an ophthalmologist. Scand J Rheumatol Suppl 115:23–27

    Google Scholar 

  7. Muller LJ, Pels L, Vrensen GF (1996) Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci 37:476–488

    CAS  PubMed  Google Scholar 

  8. Guthoff RF, Wienss H, Hahnel C, Wree A (2005) Epithelial innervation of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea 24:608–613

    Article  PubMed  Google Scholar 

  9. Oliveira-Soto L, Efron N (2001) Morphology of corneal nerves using confocal microscopy. Cornea 20:374–384

    Article  CAS  PubMed  Google Scholar 

  10. Nishida T (2005) Neurotrophic mediators and corneal wound healing. Ocul Surf 3:194–202

    Article  PubMed  Google Scholar 

  11. Cruzat A, Witkin D, Baniasadi N et al (2011) Inflammation and the nervous system: the connection in the cornea in patients with infectious keratitis. Invest Ophthalmol Vis Sci 52:5136–5143. doi:10.1167/iovs.10-7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin H, Li W, Dong N, et al. (2010) Changes in corneal epithelial layer inflammatory cells in aqueous tear-deficient dry eye. Invest Ophthalmol Vis Sci 51:122–128. doi:10.1167/iovs.09-3629

  13. Zhivov A, Stave J, Vollmar B, Guthoff R (2005) In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol 243:1056–1061. doi:10.1007/s00417-004-1075-8

    Article  PubMed  Google Scholar 

  14. Cruzat A, Pavan-Langston D, Hamrah P (2010) In vivo confocal microscopy of corneal nerves: analysis and clinical correlation. Semin Ophthalmol 25:171–177. doi:10.3109/08820538.2010.518133

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patel DV, McGhee CN (2009) In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. Br J Ophthalmol 93:853–860. doi:10.1136/bjo.2008.150615

    Article  CAS  PubMed  Google Scholar 

  16. Vitali C, Bootsma H, Bowman SJ et al (2013) Classification criteria for Sjogren’s syndrome: we actually need to definitively resolve the long debate on the issue. Ann Rheum Dis 72:476–478. doi:10.1136/annrheumdis-2012-202565

    Article  PubMed  Google Scholar 

  17. Meijering E, Jacob M, Sarria JC et al (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytom A 58:167–176. doi:10.1002/cyto.a.20022

    Article  CAS  Google Scholar 

  18. Schiffman RM, Christianson MD, Jacobsen G et al (2000) Reliability and validity of the ocular surface disease Index. Arch Ophthalmol 118:615–621. doi:10.1001/archopht.118.5.615

    Article  CAS  PubMed  Google Scholar 

  19. Authors N (2007) Research in dry eye: report of the research Subcommittee of the International dry eye WorkShop (2007). Ocul Surf 5:179–193. doi:10.1016/S1542-0124(12)70086-1

    Article  Google Scholar 

  20. García-Carrasco M, Fuentes-Alexandro S, Escárcega RO et al (2006) Pathophysiology of Sjogren’s syndrome. Arch Med Res 37:921–932. doi:10.1016/j.arcmed.2006.08.002

    Article  PubMed  Google Scholar 

  21. Authors N (2007) The epidemiology of dry eye disease: report of the epidemiology Subcommittee of the International dry eye WorkShop (2007). Ocul Surf 5:93–107. doi:10.1016/S1542-0124(12)70082-4

    Article  Google Scholar 

  22. Niederer RL, Perumal D, Sherwin T, McGhee CN (2007) Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol 91:1165–1169. doi:10.1136/bjo.2006.112656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamrah P, Cruzat A, Dastjerdi MH et al (2010) Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology 117:1930–1936. doi:10.1016/j.ophtha.2010.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  24. Malik RA, Kallinikos P, Abbott CA et al (2003) Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 46:683–688. doi:10.1007/s00125-003-1086-8

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberg ME, Tervo TM, Immonen IJ et al (2000) Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 41:2915–2921

    CAS  PubMed  Google Scholar 

  26. Kallinikos P, Berhanu M, O’Donnell C et al (2004) Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci 45:418–422

    Article  PubMed  Google Scholar 

  27. Calvillo MP, McLaren JW, Hodge DO, Bourne WM (2004) Corneal reinnervation after LASIK: prospective 3-year longitudinal study. Invest Ophthalmol Vis Sci 45:3991–3996. doi:10.1167/iovs.04-0561

    Article  PubMed  Google Scholar 

  28. Erie JC, McLaren JW, Hodge DO, Bourne WM (2005) Recovery of corneal subbasal nerve density after PRK and LASIK. Am J Ophthalmol 140:1059–1064. doi:10.1016/j.ajo.2005.07.027

    Article  PubMed  Google Scholar 

  29. Villani E, Galimberti D, Viola F et al (2008) Corneal involvement in rheumatoid arthritis: an in vivo confocal study. Invest Ophthalmol Vis Sci 49:560–564. doi:10.1167/iovs.07-0893

    Article  PubMed  Google Scholar 

  30. Benitez-Del-Castillo JM, Acosta MC, Wassfi MA et al (2007) Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest Ophthalmol Vis Sci 48:173–181. doi:10.1167/iovs.06-0127

    Article  PubMed  Google Scholar 

  31. Hosal BM, Ornek N, Zilelioglu G, Elhan AH (2005) Morphology of corneal nerves and corneal sensation in dry eye: a preliminary study. Eye 19:1276–1279. doi:10.1038/sj.eye.6701760

    Article  CAS  PubMed  Google Scholar 

  32. Tuominen IS, Konttinen YT, Vesaluoma MH et al (2003) Corneal innervation and morphology in primary Sjogren’s syndrome. Invest Ophthalmol Vis Sci 44:2545–2549

    Article  PubMed  Google Scholar 

  33. Zhang M, Chen J, Luo L et al (2005) Altered corneal nerves in aqueous tear deficiency viewed by in vivo confocal microscopy. Cornea 24:818–824

    Article  PubMed  Google Scholar 

  34. Hamrah P, Zhang Q, Liu Y, Dana MR (2002) Novel characterization of MHC class II-negative population of resident corneal Langerhans cell-type dendritic cells. Invest Ophthalmol Vis Sci 43:639–646

    PubMed  Google Scholar 

  35. Nakamura T, Ishikawa F, Sonoda KH et al (2005) Characterization and distribution of bone marrow-derived cells in mouse cornea. Invest Ophthalmol Vis Sci 46:497–503. doi:10.1167/iovs.04-1154

    Article  PubMed  Google Scholar 

  36. Mastropasqua L, Nubile M, Lanzini M et al (2006) Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol 142:736–744. doi:10.1016/j.ajo.2006.06.057

    Article  PubMed  Google Scholar 

  37. Labbe A, Gheck L, Iordanidou V et al (2010) An in vivo confocal microscopy and impression cytology evaluation of pterygium activity. Cornea 29:392–399. doi:10.1097/ICO.0b013e3181bd44ce

    Article  PubMed  Google Scholar 

  38. Wang Y, Zhao F, Zhu W et al (2010) In vivo confocal microscopic evaluation of morphologic changes and dendritic cell distribution in pterygium. Am J Ophthalmol 150:650–655 e1. doi:10.1016/j.ajo.2010.05.025

    Article  PubMed  Google Scholar 

  39. Tuisku IS, Konttinen YT, Konttinen LM, Tervo TM (2008) Alterations in corneal sensitivity and nerve morphology in patients with primary Sjögren’s syndrome. Exp Eye Res 86:879–885. doi:10.1016/j.exer.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  40. Comstock TL, Decory HH (2012) Advances in corticosteroid therapy for ocular inflammation: Loteprednol etabonate. Int J Inflam. doi:10.1155/2012/789623

    PubMed  PubMed Central  Google Scholar 

  41. Villani E, Garoli E, Termine V et al (2015) Corneal confocal microscopy in dry eye treated with corticosteroids. Optom Vis Sci 92:e290–e295. doi:10.1097/OPX.0000000000000600

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Vikas Chopra for providing insight and expertise that greatly assisted the research and for comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia L. Lee.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Submitted to: “Graefe’s Archive for Clinical and Experimental Ophthalmology”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepelus, T.C., Chiu, G.B., Huang, J. et al. Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: a preliminary study. Graefes Arch Clin Exp Ophthalmol 255, 1771–1778 (2017). https://doi.org/10.1007/s00417-017-3680-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00417-017-3680-3

Keywords