Skip to main content

Advertisement

Log in

Unraveling the role of glial cell line–derived neurotrophic factor in the treatment of Parkinson’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson’s disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line–derived neurotrophic factor (GDNF) in Parkinson’s disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson’s disease–related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson’s disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson’s disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. De Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  2. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  3. Tarazi FI, Sahli ZT, Wolny M, Mousa SA (2014) Emerging therapies for Parkinson’s disease: from bench to bedside. Pharmacol Ther 144:123–133

    Article  CAS  PubMed  Google Scholar 

  4. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Saarma M, Sariola H (1999) Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Microsc Res Tech 45:292–302

    Article  CAS  PubMed  Google Scholar 

  6. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr et al (1996) Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM (2020) GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res 382:47–56

    Article  PubMed  PubMed Central  Google Scholar 

  8. Glerup S, Lume M, Olsen D, Nyengaard JR, Vaegter CB, Gustafsen C et al (2013) SorLA controls neurotrophic activity by sorting of GDNF and its receptors GFRα1 and RET. Cell Rep 3:186–199

    Article  CAS  PubMed  Google Scholar 

  9. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  10. Oo TF, Kholodilov N, Burke RE (2003) Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 23:5141–5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carnicella S, Kharazia V, Jeanblanc J, Janak PH, Ron D (2008) GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc Natl Acad Sci 105:8114–8119

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Lisse TS, Sharma M, Vishlaghi N, Pullagura SR, Braun RE (2020) GDNF promotes hair formation and cutaneous wound healing by targeting bulge stem cells. NPJ Regen Med 5:1–15

    Article  Google Scholar 

  13. Zhao Y, Haney MJ, Gupta R, Bohnsack JP, He Z, Kabanov AV et al (2014) GDNF-transfected macrophages produce potent neuroprotective effects in Parkinson’s disease mouse model. PLoS One 9:1–11. https://doi.org/10.1371/journal.pone.0106867

    Article  CAS  Google Scholar 

  14. Baydyuk M, Xu B (2014) BDNF signaling and survival of striatal neurons. Front Cell Neurosci 8:254

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vargas-Leal V, Bruno R, Derfuss T, Krumbholz M, Hohlfeld R, Meinl E (2005) Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells. J Immunol 175:2301–2308

    Article  CAS  PubMed  Google Scholar 

  16. Bordeaux M-C, Forcet C, Granger L, Corset V, Bidaud C, Billaud M et al (2000) The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J 19:4056–4063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mills CD, Allchorne AJ, Griffin RS, Woolf CJ, Costigan M (2007) GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Mol Cell Neurosci 36:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175

    Article  CAS  PubMed  Google Scholar 

  19. Paratcha G, Ledda F (2008) GDNF and GFRα: a versatile molecular complex for developing neurons. Trends Neurosci 31:384–391

    Article  CAS  PubMed  Google Scholar 

  20. Grondin R, Gash DM (1998) Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson’s disease. J Neurol 245:P35–P42

    Article  CAS  PubMed  Google Scholar 

  21. Bäckman CM, Shan L, Zhang YJ, Hoffer BJ, Leonard S, Troncoso JC et al (2006) Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson’s disease: a real-time PCR study. Mol Cell Endocrinol 252:160–166

    Article  PubMed  Google Scholar 

  22. Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116:3855–3862

    Article  CAS  PubMed  Google Scholar 

  23. Perrinjaquet M (2010) Control of neuronal survival, migration and outgrowth by GDNF and its receptors. Karolinska Institutet, Sweden

    Google Scholar 

  24. Kawai K, Takahashi M (2020) Intracellular RET signaling pathways activated by GDNF. Cell Tissue Res 382:113–123

    Article  CAS  PubMed  Google Scholar 

  25. Gash DM, Zhang Z, Gerhardt G (1998) Neuroprotective and neurorestorative properties of GDNF. Ann Neurol 44:S121–S125

    Article  CAS  PubMed  Google Scholar 

  26. Lin C, Cao W, Ren Z, Tang Y, Zhang C, Yang R et al (2017) GDNF secreted by nerves enhances PD-L1 expression via JAK2-STAT1 signaling activation in HNSCC. Oncoimmunology 6:e1353860

    Article  PubMed  PubMed Central  Google Scholar 

  27. Consales C, Volpicelli F, Greco D, Leone L, Colucci-D’Amato L, Perrone-Capano C et al (2007) GDNF signaling in embryonic midbrain neurons in vitro. Brain Res 1159:28–39

    Article  CAS  PubMed  Google Scholar 

  28. Nicolas CS, Peineau S, Amici M, Csaba Z, Fafouri A, Javalet C et al (2012) The Jak/STAT pathway is involved in synaptic plasticity. Neuron 73:374–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tzeng H-T, Chyuan I-T, Lai J-H (2021) Targeting the JAK-STAT pathway in autoimmune diseases and cancers: a focus on molecular mechanisms and therapeutic potential. Biochem Pharmacol 193:114760

    Article  CAS  PubMed  Google Scholar 

  30. Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Dev Brain Res 85:80–88

    Article  CAS  Google Scholar 

  31. Pochon N-M, Menoud A, Tseng JL, Zurn AD, Aebischer P (1997) Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 9:463–471

    Article  CAS  PubMed  Google Scholar 

  32. Trupp M, Belluardo N, Funakoshi H, Ibáñez CF (1997) Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17:3554–3567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buj-Bello A, Buchman VL, Horton A, Rosenthal A, Davies AM (1995) GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 15:821–828

    Article  CAS  PubMed  Google Scholar 

  34. Trupp M, Rydén M, Jörnvall H, Funakoshi H, Timmusk T, Arenas E et al (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130:137–148

    Article  CAS  PubMed  Google Scholar 

  35. Zurn AD, Baetge EE, Hammang JP, Tan SA, Aebischer P (1994) Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for motoneurones. Neuroreport 6:113–118

    Article  CAS  PubMed  Google Scholar 

  36. Mount HTJ, Dean DO, Alberch J, Dreyfus CF, Black IB (1995) Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of Purkinje cells. Proc Natl Acad Sci 92:9092–9096

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Martin D, Miller G, Rosendahl M, Russell DA (1995) Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat. Brain Res 683:172–178

    Article  CAS  PubMed  Google Scholar 

  38. Arenas E, Trupp M, Åkerud P, Ibáñez CF (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15:1465–1473

    Article  CAS  PubMed  Google Scholar 

  39. Beck KD, Irwin I, Valverde J, Brennan TJ, Langston JW, Hefti F (1996) GDNF induces a dystonia-like state in neonatal rats and stimulates dopamine and serotonin synthesis. Neuron 16:665–673

    Article  CAS  PubMed  Google Scholar 

  40. Williams LR, Inouye G, Cummins V, Pelleymounter MA (1996) Glial cell line-derived neurotrophic factor sustains axotomized basal forebrain cholinergic neurons in vivo: dose-response comparison to nerve growth factor and brain-derived neurotrophic factor. J Pharmacol Exp Ther 277:1140–1151

    CAS  PubMed  Google Scholar 

  41. Treanor JJS, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD et al (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Chu Y, Kordower JH (2021) GDNF signaling in subjects with minimal motor deficits and Parkinson’s disease. Neurobiol Dis 153:105298

    Article  CAS  PubMed  Google Scholar 

  43. Trupp M, Arenas E, Fainzilber M, Nilsson A-S, Sieber B-A, Grigoriou M et al (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M et al (1996) GDNF--induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85:1113–1124

    Article  CAS  PubMed  Google Scholar 

  45. Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  PubMed  ADS  Google Scholar 

  48. Oppenheim RW, Houenou LJ, Parsadanian AS, Prevette D, Snider WD, Shen L (2000) Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J Neurosci 20:5001–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA et al (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373:339–341

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Gash DM, Gerhardt GA, Hoffer BJ (1997) Effects of glial cell line-derived neurotrophic factor on the nigrostriatal dopamine system in rodents and nonhuman primates. Adv Pharmacol 42:911–915

    Article  Google Scholar 

  52. Tomac A, Lindqvist E, Lin L-F, Ögren SO, Young D, Hoffer BJ et al (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Yan Q, Matheson C, Lopez OT (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373:341–344

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Ramsey AJ, Fitzpatrick PF (1998) Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: evidence for a novel regulatory mechanism. Biochemistry 37:8980–8986

    Article  CAS  PubMed  Google Scholar 

  55. Gordon SL, Quinsey NS, Dunkley PR, Dickson PW (2008) Tyrosine hydroxylase activity is regulated by two distinct dopamine-binding sites. J Neurochem 106:1614–1623

    Article  CAS  PubMed  Google Scholar 

  56. Hebert MA, Van Horne CG, Hoffer BJ, Gerhardt GA (1996) Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J Pharmacol Exp Ther 279:1181–1190

    CAS  PubMed  Google Scholar 

  57. Bourque M-J, Trudeau L-E (2000) GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur J Neurosci 12:3172–3180

    Article  CAS  PubMed  Google Scholar 

  58. Yang F, Feng L, Zheng F, Johnson SW, Du J, Shen L et al (2001) GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nat Neurosci 4:1071–1078

    Article  CAS  PubMed  Google Scholar 

  59. Barroso-Chinea P, Cruz-Muros I, Afonso-Oramas D, Castro-Hernández J, Salas-Hernández J, Chtarto A et al (2016) Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system. Neurobiol Dis 88:44–54

    Article  CAS  PubMed  Google Scholar 

  60. Littrell OM, Pomerleau F, Huettl P, Surgener S, McGinty JF, Middaugh LD et al (2012) Enhanced dopamine transporter activity in middle-aged Gdnf heterozygous mice. Neurobiol Aging 33:427–4e1

    Article  Google Scholar 

  61. Eslamboli A, Cummings RM, Ridley RM, Baker HF, Muzyczka N, Burger C et al (2003) Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against 6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Exp Neurol 184:536–548

    Article  CAS  PubMed  Google Scholar 

  62. Bajracharya R, Song JG, Back SY, Han HK (2019) Recent advancements in non-invasive formulations for protein drug delivery. Comput Struct Biotechnol J 17:1290–1308. https://doi.org/10.1016/j.csbj.2019.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P (2009) Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 87:212–251. https://doi.org/10.1016/j.pneurobio.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  64. Cao SJ, Xu S, Wang HM, Ling Y, Dong J, Xia RD et al (2019) Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech 20:1–11. https://doi.org/10.1208/s12249-019-1325-z

    Article  CAS  Google Scholar 

  65. Aly AE, Harmon BT, Dines K, Sesenoglu-laird O, Padegimas L, Cooper MJ et al (2019) Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol Neurobiol 56:688–701

    Article  CAS  PubMed  Google Scholar 

  66. Garbayo E, Montero-Menei CN, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2009) Effective GDNF brain delivery using microspheres-a promising strategy for Parkinson’s disease. J Control Release 135:119–126. https://doi.org/10.1016/j.jconrel.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  67. Garbayo E, Ansorena E, Blanco-Prieto MJ (2013) Drug development in Parkinson’s disease: from emerging molecules to innovative drug delivery systems. Maturitas 76:272–278. https://doi.org/10.1016/j.maturitas.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  68. Garbayo E, Ansorena E, Lana H, del Mar Carmona-Abellan M, Marcilla I, Lanciego JL et al (2016) Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys. Biomaterials 110:11–23. https://doi.org/10.1016/j.biomaterials.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  69. Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ (2019) Micro- and nanotechnology approaches to improve Parkinson’s disease therapy. J Control Release 295:201–213. https://doi.org/10.1016/j.jconrel.2018.12.036

    Article  CAS  PubMed  Google Scholar 

  70. Herrán E, Ruiz-Ortega JÁ, Aristieta A, Igartua M, Requejo C, Lafuente JV et al (2013) In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur J Pharm Biopharm 85:1183–1190. https://doi.org/10.1016/j.ejpb.2013.03.034

    Article  CAS  PubMed  Google Scholar 

  71. Toft M, Lilleeng B, Ramm-Pettersen J, Skogseid IM, Gundersen V, Gerdts R et al (2011) Long-term efficacy and mortality in Parkinson’s disease patients treated with subthalamic stimulation. Mov Disord 26:1931–1934. https://doi.org/10.1002/mds.23817

    Article  PubMed  Google Scholar 

  72. Delcroix GJR, Garbayo E, Sindji L, Thomas O, Vanpouille-Box C, Schiller PC et al (2011) The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats. Biomaterials 32:1560–1573. https://doi.org/10.1016/j.biomaterials.2010.10.041

    Article  CAS  PubMed  Google Scholar 

  73. Herrán E, Requejo C, Ruiz-Ortega JA, Aristieta A, Igartua M, Bengoetxea H et al (2014) Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine 9:2677–2687. https://doi.org/10.2147/IJN.S61940

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hernando S, Herran E, Figueiro-Silva J, Pedraz JL, Igartua M, Carro E et al (2018) Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol Neurobiol 55:145–155. https://doi.org/10.1007/s12035-017-0728-7

    Article  CAS  PubMed  Google Scholar 

  75. Georgievska B, Kirik D, Rosenblad C, Lundberg C, Björklund A (2002) Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 13:75–82

    Article  CAS  PubMed  Google Scholar 

  76. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Kirik D, Rosenblad C, Björklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kornum BR, Stott SRW, Mattsson B, Wisman L, Ettrup A, Hermening S et al (2010) Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain. Exp Neurol 222:70–85

    Article  CAS  PubMed  Google Scholar 

  79. Dodiya HB, Bjorklund T, Stansell J III, Mandel RJ, Kirik D, Kordower JH (2010) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18:579–587

    Article  CAS  PubMed  Google Scholar 

  80. Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C et al (2005) Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25:769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P et al (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30:9567–9577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Elder JB, Lonser RR et al (2021) An update on gene therapy approaches for Parkinson’s disease: restoration of dopaminergic function. J Parkinsons Dis 11:S173–S182

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S et al (2017) Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 4:43–63

    Article  PubMed  PubMed Central  Google Scholar 

  84. Choi-Lundberg DL, Lin Q, Schallert T, Crippens D, Davidson BL, Chang Y-N et al (1998) Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp Neurol 154:261–275

    Article  CAS  PubMed  Google Scholar 

  85. Connor B, Kozlowski DA, Schallert T, Tillerson JL, Davidson BL, Bohn MC (1999) Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther 6:1936–1951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Lovely Professional University for the successful completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

None.

Consent to participate

Not applicable.

Research involving human participants and/or animals

Not applicable as it is a review article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakoty, V., Sarathlal, K.C., Kaur, P. et al. Unraveling the role of glial cell line–derived neurotrophic factor in the treatment of Parkinson’s disease. Neurol Sci 45, 1409–1418 (2024). https://doi.org/10.1007/s10072-023-07253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07253-2

Keywords

Profiles

  1. Pankaj Wadhwa
  2. Keshav Raj Paudel