Skip to main content

Advertisement

Log in

Acetic acid triggers cytochrome c release in yeast heterologously expressing human Bax

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Proteins of the Bcl-2 protein family, including pro-apoptotic Bax and anti-apoptotic Bcl-xL, are critical for mitochondrial-mediated apoptosis regulation. Since yeast lacks obvious orthologs of Bcl-2 family members, heterologous expression of these proteins has been used to investigate their molecular and functional aspects. Active Bax is involved in the formation of mitochondrial outer membrane pores, through which cytochrome c (cyt c) is released, triggering a cascade of downstream apoptotic events. However, when in its inactive form, Bax is largely cytosolic or weakly bound to mitochondria. Given the central role of Bax in apoptosis, studies aiming to understand its regulation are of paramount importance towards its exploitation as a therapeutic target. So far, studies taking advantage of heterologous expression of human Bax in yeast to unveil regulation of Bax activation have relied on the use of artificial mutated or mitochondrial tagged Bax for its activation, rather than the wild type Bax (Bax α). Here, we found that cell death could be triggered in yeast cells heterologoulsy expressing Bax α with concentrations of acetic acid that are not lethal to wild type cells. This was associated with Bax mitochondrial translocation and cyt c release, closely resembling the natural Bax function in the cellular context. This regulated cell death process was reverted by co-expression with Bcl-xL, but not with Bcl-xLΔC, and in the absence of Rim11p, the yeast ortholog of mammalian GSK3β. This novel system mimics human Bax α regulation by GSK3β and can therefore be used as a platform to uncover novel Bax regulators and explore its therapeutic modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

My manuscript has data included as electronic supplementary material.

References

  1. Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356. https://doi.org/10.1146/annurev-cellbio-100913-013226

    Article  CAS  PubMed  Google Scholar 

  2. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science (80-). https://doi.org/10.1126/science.7878464

  4. Chipuk JE, Moldoveanu T, Llambi F et al (2010) The BCL-2 family reunion. Mol Cell 37:299–310. https://doi.org/10.1016/j.molcel.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337. https://doi.org/10.1038/sj.onc.1210220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326. https://doi.org/10.1126/science.281.5381.1322

    Article  CAS  PubMed  Google Scholar 

  7. Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80. https://doi.org/10.1038/cdd.2017.186

    Article  CAS  PubMed  Google Scholar 

  8. Peña-Blanco A, García-Sáez AJ (2018) Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J 285:416–431. https://doi.org/10.1111/febs.14186

    Article  CAS  PubMed  Google Scholar 

  9. Te HY, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem. https://doi.org/10.1074/jbc.273.17.10777

    Article  Google Scholar 

  10. Te HY, Wolter KG, Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.94.8.3668

    Article  Google Scholar 

  11. Zong W-X, Li C, Hatzivassiliou G et al (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69. https://doi.org/10.1083/jcb.200302084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Renault TT, Manon S (2011) Bax: addressed to kill. Biochimie 93:1379–1391. https://doi.org/10.1016/j.biochi.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  13. Wolter KG, Te HY, Smith CL et al (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. https://doi.org/10.1083/jcb.139.5.1281

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lalier L, Cartron P-F, Juin P et al (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12:887–896. https://doi.org/10.1007/s10495-007-0749-1

    Article  CAS  PubMed  Google Scholar 

  15. Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904. https://doi.org/10.1161/01.cir.0000019403.35847.23

    Article  CAS  PubMed  Google Scholar 

  16. Zong WX, Lindsten T, Ross AJ et al (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. https://doi.org/10.1101/gad.897601

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuwana T, Bouchier-Hayes L, Chipuk JE et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535. https://doi.org/10.1016/j.molcel.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  18. Gardai SJ, Hildeman DA, Frankel SK et al (2004) Phosphorylation of Bax ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem. https://doi.org/10.1074/jbc.M400063200

    Article  PubMed  Google Scholar 

  19. Xin M, Gao F, May WS et al (2007) Protein kinase Cζ abrogates the proapoptotic function of bax through phosphorylation. J Biol Chem. https://doi.org/10.1074/jbc.M701613200

    Article  PubMed  Google Scholar 

  20. Xin M, Deng X (2006) Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. J Biol Chem 281:18859–18867. https://doi.org/10.1074/jbc.M512543200

    Article  CAS  PubMed  Google Scholar 

  21. Linseman DA, Butts BD, Precht TA et al (2004) Glycogen synthase kinase-3β phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24:9993–10002. https://doi.org/10.1523/JNEUROSCI.2057-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. https://doi.org/10.1074/jbc.M510644200

    Article  PubMed  Google Scholar 

  23. Carmona-Gutierrez D, Bauer MA, Zimmermann A, et al (2018) Guidelines and recommendations on yeast cell death nomenclature. Microb Cell (Graz, Austria) 5:4–31. https://doi.org/10.15698/mic2018.01.607

  24. Carmona-Gutierrez D, Eisenberg T, Büttner S et al (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773. https://doi.org/10.1038/cdd.2009.219

    Article  CAS  PubMed  Google Scholar 

  25. Priault M, Camougrand N, Kinnally KW et al (2003) Yeast as a tool to study Bax/mitochondrial interactions in cell death. FEMS Yeast Res 4:15–27. https://doi.org/10.1016/S1567-1356(03)00143-0

    Article  CAS  PubMed  Google Scholar 

  26. Pereira C, Silva RD, Saraiva L et al (2008) Mitochondria-dependent apoptosis in yeast. Biochim Biophys Acta 1783:1286–1302. https://doi.org/10.1016/j.bbamcr.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  27. Polčic P, Jaká P, Mentel M (2015) Yeast as a tool for studying proteins of the Bcl-2 family. Microb Cell (Graz, Austria) 2:74–87. https://doi.org/10.15698/mic2015.03.193

  28. Alves S, Neiri L, Chaves SR et al (2018) N-terminal acetylation modulates Bax targeting to mitochondria. Int J Biochem Cell Biol 95:35–42. https://doi.org/10.1016/j.biocel.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  29. Arokium H, Ouerfelli H, Velours G et al (2007) Substitutions of potentially phosphorylatable serine residues of bax reveal how they may regulate its interaction with mitochondria. J Biol Chem. https://doi.org/10.1074/jbc.M704891200

    Article  PubMed  Google Scholar 

  30. Renault TT, Teijido O, Missire F et al (2015) Bcl-xL stimulates Bax relocation to mitochondria and primes cells to ABT-737. Int J Biochem Cell Biol 64:136–146. https://doi.org/10.1016/j.biocel.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  31. Gietz RD, Akio S (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534. https://doi.org/10.1016/0378-1119(88)90185-0

    Article  CAS  PubMed  Google Scholar 

  32. Garenne D, Renault TT, Manon S (2016) Bax mitochondrial relocation is linked to its phosphorylation and its interaction with Bcl-xL. Microb Cell (Graz, Austria) 3:597–605. https://doi.org/10.15698/mic2016.12.547

  33. Millard PJ, Roth BL, Thi HPT et al (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol. https://doi.org/10.1128/aem.63.7.2897-2905.1997

    Article  PubMed  PubMed Central  Google Scholar 

  34. Prudêncio C, Sansonetty F, Côrte-Real M (1998) Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry. https://doi.org/10.1002/(SICI)1097-0320(19980401)31:4%3c307::AID-CYTO11%3e3.0.CO;2-U

    Article  PubMed  Google Scholar 

  35. Camougrand N, Grelaud-Coq A, Marza E et al (2003) The product of the UTH1 gene, required for Bax-induced cell death in yeast, is involved in the response to rapamycin. Mol Microbiol. https://doi.org/10.1046/j.1365-2958.2003.03311.x

    Article  PubMed  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  37. Westphal D, Kluck RM, Dewson G (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 21:196–205. https://doi.org/10.1038/cdd.2013.139

    Article  CAS  PubMed  Google Scholar 

  38. Schellenberg B, Wang P, Keeble JA et al (2013) Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol Cell 49:959–971. https://doi.org/10.1016/j.molcel.2012.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pereira H, Oliveira CSF, Castro L, et al (2015) Yeast as a tool to explore cathepsin D function. Microb Cell (Graz, Austria) 2:225–234. https://doi.org/10.15698/mic2015.07.212

  40. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11. https://doi.org/10.1038/cdd.2008.150

    Article  CAS  PubMed  Google Scholar 

  41. Renault TT, Dejean LM, Manon S (2017) A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 161:201–210. https://doi.org/10.1016/j.mad.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  42. Simonyan L, Renault TT, da Costa Novais MJ et al (2016) Regulation of Bax/mitochondria interaction by AKT. FEBS Lett 590:13–21. https://doi.org/10.1002/1873-3468.12030

    Article  CAS  PubMed  Google Scholar 

  43. Gallenne T, Gautier F, Oliver L et al (2009) Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J Cell Biol 185:279–290. https://doi.org/10.1083/jcb.200809153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greenhalf W, Stephan C, Chaudhuri B (1996) Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett 380:169–175. https://doi.org/10.1016/0014-5793(96)00044-0

    Article  CAS  PubMed  Google Scholar 

  45. Manon S, Chaudhuri B, Guérin M (1997) Release of cytochrome c and decrease of cytochrome c oxidase in Bar-expressing yeast cells, and prevention of these effects by coexpression of Bcl-x(L). FEBS Lett. https://doi.org/10.1016/S0014-5793(97)01087-9

    Article  PubMed  Google Scholar 

  46. Torgler CN, de Tiani M, Raven T et al (1997) Expression of bak in S. pombe results in a lethality mediated through interaction with the calnexin homologue Cnx1. Cell Death Differ 4:263–271. https://doi.org/10.1038/sj.cdd.4400239

    Article  CAS  PubMed  Google Scholar 

  47. Bounhar Y, Mann KK, Roucou X, LeBlanc AC (2006) Prion protein prevents Bax-mediated cell death in the absence of other Bcl-2 family members in Saccharomyces cerevisiae. FEMS Yeast Res 6:1204–1212. https://doi.org/10.1111/j.1567-1364.2006.00122.x

    Article  CAS  PubMed  Google Scholar 

  48. Ligr M, Madeo F, Fröhlich E et al (1998) Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 438:61–65. https://doi.org/10.1016/s0014-5793(98)01227-7

    Article  CAS  PubMed  Google Scholar 

  49. De Smet K, Eberhardt I, Contreras R (2004) Bax-induced cell death in Candida albicans. Yeast. https://doi.org/10.1002/yea.1180

    Article  PubMed  Google Scholar 

  50. Poliaková D, Sokolíková B, Kolarov J, Šabová L (2002) The antiapoptotic protein Bcl-XL prevents the cytotoxic effect of Bax, but not Bax-induced formation of reactive oxygen species, in Kluyveromyces lactis. Microbiology. https://doi.org/10.1099/00221287-148-9-2789

    Article  PubMed  Google Scholar 

  51. Arokium H, Camougrand N, Vallette FM, Manon S (2004) Studies of the Interaction of Substituted Mutants of BAX with Yeast Mitochondria Reveal That the C-terminal Hydrophobic α-Helix Is a Second ART Sequence and Plays a Role in the Interaction with Anti-apoptotic BCL-x L. J Biol Chem 279:52566–52573. https://doi.org/10.1074/jbc.M408373200

    Article  CAS  PubMed  Google Scholar 

  52. Cartron P-F, Arokium H, Oliver L et al (2005) Distinct domains control the addressing and the insertion of Bax into mitochondria. J Biol Chem 280:10587–10598. https://doi.org/10.1074/jbc.M409714200

    Article  CAS  PubMed  Google Scholar 

  53. Casey E, Sedlak M, Ho NWY, Mosier NS (2010) Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res 10:385–393. https://doi.org/10.1111/j.1567-1364.2010.00623.x

    Article  CAS  PubMed  Google Scholar 

  54. Casal M, Cardoso H, Leao C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142:1385–1390. https://doi.org/10.1099/13500872-142-6-1385

    Article  CAS  PubMed  Google Scholar 

  55. Jan G, Belzacq A-S, Haouzi D et al (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9:179–188. https://doi.org/10.1038/sj.cdd.4400935

    Article  CAS  PubMed  Google Scholar 

  56. Lan A, Lagadic-Gossmann D, Lemaire C et al (2007) Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis 12:573–591. https://doi.org/10.1007/s10495-006-0010-3

    Article  CAS  PubMed  Google Scholar 

  57. Marques C, Oliveira CSF, Alves S et al (2013) Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death Dis 4:e507–e507. https://doi.org/10.1038/cddis.2013.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saraiva L, Silva RD, Pereira G et al (2006) Specific modulation of apoptosis and Bcl-xL phosphorylation in yeast by distinct mammalian protein kinase C isoforms. J Cell Sci 119:3171–3181. https://doi.org/10.1242/jcs.03033

    Article  CAS  PubMed  Google Scholar 

  59. Edlich F, Banerjee S, Suzuki M et al (2011) Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145:104–116. https://doi.org/10.1016/j.cell.2011.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Todt F, Cakir Z, Reichenbach F et al (2013) The C-terminal helix of Bcl-x L mediates Bax retrotranslocation from the mitochondria. Cell Death Differ. https://doi.org/10.1038/cdd.2012.131

    Article  PubMed  Google Scholar 

  61. Zhang L, Zhang Y, Xing D (2010) LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3β-inactivation mechanism. J Cell Physiol. https://doi.org/10.1002/jcp.22123

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of “Contrato-Programa” UIDB/04050/2020- PE 20-23 and FCTANR/BEX-BCM/0175/2012. Joana P. Guedes acknowledges the PhD fellowship SFRH/BD/132070/2017 funded by FCT. Cátia Santos-Pereira acknowledges the PhD fellowship PD/BD/128032/2016 funded by FCT under the scope of the doctoral programme in Applied and Environmental Microbiology (DP_AEM).

Author information

Authors and Affiliations

Authors

Contributions

SRC, SM and MCR conceived and designed the experiments and analyzed the data; the first draft of the manuscript was written by JPG and VB and all authors commented on previous versions of the manuscript; material preparation, data collection and analysis were performed by JPG, VB, CSP and SM; SRC and MCR supervised the work, and MCR, MJS and SM contributed with reagents, materials and resources. All authors read and approved the final submitted version of the manuscript.

Corresponding author

Correspondence to Manuela Côrte-Real.

Ethics declarations

Conflict of interest

The authors declare no competing interests in the execution of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guedes, J.P., Baptista, V., Santos-Pereira, C. et al. Acetic acid triggers cytochrome c release in yeast heterologously expressing human Bax. Apoptosis 27, 368–381 (2022). https://doi.org/10.1007/s10495-022-01717-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01717-0

Keywords

Profiles

  1. Joana P. Guedes
  2. Stéphen Manon
  3. Manuela Côrte-Real