Skip to main content

Advertisement

Log in

Targeting lysophosphatidic acid receptor with Ki16425 impedes T cell lymphoma progression through apoptosis induction, glycolysis inhibition, and activation of antitumor immune response

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Lysophosphatidic acid (LPA) is a small phospholipid that acts as an extracellular lipid mediator. It promotes cancer progression by altering a wide array of cellular processes, including apoptosis, survival, angiogenesis, invasion, and migration through binding with its cognate receptors. Intriguingly, our previous study showed that in vitro treatment of LPA induced survival of T lymphoma cells. Hence, the present investigation was designed to investigate the antitumor potential of Ki16425, an antagonist of LPA receptors, against T cell lymphoma. Our in vitro results showed inhibition of LPA-mediated survival and metabolic activity of T lymphoma cells by Ki16425. Further, in vivo experimental findings indicated the tumor retarding potential of Ki16425 against T cell lymphoma through apoptosis induction, glycolysis inhibition, and immunoactivation. The administration of Ki16425 triggered apoptosis by down-regulating the expression of Bcl2 and up-regulating p53, Bax, cleaved caspase-3, and Cyt c expression. Further, Ki16425 suppressed glycolytic activity with concomitantly decreased expression of GLUT3 and MCT1. Moreover, we also noticed an elevated level of NO and iNOS in tumor cells after Ki16425 administration which might also be responsible for apoptosis induction and suppressed glycolysis. Additionally, we observed an increased population of total leukocytes, lymphocytes, and monocytes along with increased thymocytes count and IL-2 and IFN-γ levels. Besides, we observed amelioration of tumor-induced kidney and liver damages by Ki16425. Taken together, this is the first study that demonstrates that LPA receptors could be potential future therapeutic targets for designing promising therapeutic strategies against T cell lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ANOVA:

Analysis of variance

Bax:

Bcl2-associated X

Bcl2:

B-cell lymphoma 2

Cyt c:

Cytochrome c

DAPI:

4′,6-Diamidino-2-phenylindole

DL:

Dalton’s lymphoma

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked Immunosorbent Assay

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GLUT3:

Glucose transporter 3

IFN-γ:

Interferon-γ

IL-2:

Interleukin-2

iNOS:

Inducible nitric oxide synthase

LPA:

Lysophosphatidic acid

LPA1:

Lysophosphatidic acid receptor 1

LPA2:

Lysophosphatidic acid receptor 2

LPA3:

Lysophosphatidic acid receptor 3

MCT1:

Monocarboxylate transporter 1

MTT:

3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide

NO:

Nitric oxide

PBS:

Phosphate-buffered saline

RPMI:

Roswell park memorial institute

RT-PCR:

Reverse-transcription polymerase chain reaction

SDS:

Sodium dodecyl sulfate

References

  1. Abdelbaset-Ismail A, Cymer M, Borkowska-Rzeszotek S et al (2019) Bioactive phospholipids enhance migration and adhesion of human leukemic cells by inhibiting heme oxygenase 1 (HO-1) and inducible nitric oxygenase synthase (iNOS) in a p38 MAPK-dependent manner. Stem Cell Rev Rep 15:139–154

    Article  PubMed  Google Scholar 

  2. Bae GH, Lee SK, Kim HS, Lee M, Lee HY, Bae YS (2017) Lysophosphatidic acid protects against acetaminophen-induced acute liver injury. Exp Mol Med 49:e407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kang S, Han J, Song SY et al (2015) Lysophosphatidic acid increases the proliferation and migration of adiposederived stem cells via the generation of reactive oxygen species. Mol Med Rep 12:5203–5210

    Article  CAS  PubMed  Google Scholar 

  4. Ray R, Rai V (2017) Lysophosphatidic acid converts monocytes into macrophages in both mice and humans. Blood 129:1177–1183

    Article  CAS  PubMed  Google Scholar 

  5. Choi JW, Herr DR, Noguchi K et al (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50:157–186

    Article  CAS  PubMed  Google Scholar 

  6. Yung YC, Stoddard NC, Chun J (2014) LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 55:1192–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kitamura C, Sonoda H, Nozawa H et al (2019) The component changes of lysophospholipid mediators in colorectal cancer. Tumour Biol 41:1010428319848616

    Article  PubMed  CAS  Google Scholar 

  8. Zhang YJ, Cao LY, Fu ZZ, Wang YJ, Wang GX, Gu T (2015) Clinical significance of plasma lysophosphatidic acid levels in the differential diagnosis of ovarian cancer. J Cancer Res Ther 11:375–380

    Article  CAS  PubMed  Google Scholar 

  9. Zheng Y, Kong Y, Goetzl EJ (2001) Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a matrigel model basement membrane. J Immunol 166:2317–2322

    Article  CAS  PubMed  Google Scholar 

  10. Amaral RF, Geraldo LHM, Einicker-Lamas M, Spohr TCLSE, Mendes F, Lima FRS (2020) Microglial lysophosphatidic acid promotes glioblastoma proliferation and migration via LPA1 receptor. J Neurochem. https://doi.org/10.1111/jnc.15097

    Article  PubMed  Google Scholar 

  11. Leve F, Peres-Moreira RJ, Binato R, Abdelhay E, Morgado-Diaz JA (2015) LPA induces colon cancer cell proliferation through a cooperation between the ROCK and STAT-3 Pathways. PLoS ONE 10:e0139094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3:582–591

    Article  CAS  PubMed  Google Scholar 

  13. Samadi N, Bekele RT, Goping IS, Schang LM, Brindley DN (2011) Lysophosphatidate induces chemo-resistance by releasing breast cancer cells from taxol-induced mitotic arrest. PLoS ONE 6:e20608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu X, Zhang Y, Chen H (2016) LPA receptor 1 mediates LPA-induced ovarian cancer metastasis: an in vitro and in vivo study. BMC Cancer 16:846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Baumforth KR, Flavell JR, Reynolds GM et al (2005) Induction of autotaxin by the Epstein-Barr virus promotes the growth and survival of Hodgkin lymphoma cells. Blood 106:2138–2146

    Article  CAS  PubMed  Google Scholar 

  16. Hu X, Haney N, Kropp D, Kabore AF, Johnston JB, Gibson SB (2005) Lysophosphatidic acid (LPA) protects primary chronic lymphocytic leukemia cells from apoptosis through LPA receptor activation of the anti-apoptotic protein AKT/PKB. J Biol Chem 280:9498–9508

    Article  CAS  PubMed  Google Scholar 

  17. Kumar SA, Hu X, Brown M et al (2009) Lysophosphatidic acid receptor expression in chronic lymphocytic leukemia leads to cell survival mediated though vascular endothelial growth factor expression. Leuk Lymphoma 50:2038–2048

    Article  CAS  PubMed  Google Scholar 

  18. Stam JC, Michiels F, van der Kammen RA, Moolenaar WH, Collard JG (1998) Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 17:4066–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu X, Mendoza FJ, Sun J, Banerji V, Johnston JB, Gibson SB (2008) Lysophosphatidic acid (LPA) induces the expression of VEGF leading to protection against apoptosis in B-cell derived malignancies. Cell Signal 20:1198–1208

    Article  CAS  PubMed  Google Scholar 

  20. Gupta VK, Jaiswara PK, Sonker P, Rawat SG, Tiwari RK, Kumar A (2020) Lysophosphatidic acid promotes survival of T lymphoma cells by altering apoptosis and glucose metabolism. Apoptosis 25:135–150

    Article  CAS  PubMed  Google Scholar 

  21. Lin YC, Chen CC, Chen WM et al (2018) LPA1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1305–1315

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Sun Y, Qu J, Yan Y, Yang Y, Cai H (2016) Roles of LPA receptor signaling in breast cancer. Expert Rev Mol Diagn 16:1103–1111

    Article  CAS  PubMed  Google Scholar 

  23. David M, Ribeiro J, Descotes F et al (2012) Targeting lysophosphatidic acid receptor type 1 with Debio 0719 inhibits spontaneous metastasis dissemination of breast cancer cells independently of cell proliferation and angiogenesis. Int J Oncol 40:1133–1141

    Article  CAS  PubMed  Google Scholar 

  24. Komachi M, Sato K, Tobo M et al (2012) Orally active lysophosphatidic acid receptor antagonist attenuates pancreatic cancer invasion and metastasis in vivo. Cancer Sci 103:1099–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Komachi M, Tomura H, Malchinkhuu E et al (2009) LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis 30:457–465

    Article  CAS  PubMed  Google Scholar 

  26. Loskutov YV, Griffin CL, Marinak KM et al (2018) LPA signaling is regulated through the primary cilium: a novel target in glioblastoma. Oncogene 37:1457–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Su SC, Hu X, Kenney PA et al (2013) Autotaxin-lysophosphatidic acid signaling axis mediates tumorigenesis and development of acquired resistance to sunitinib in renal cell carcinoma. Clin Cancer Res 19:6461–6472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun K, Cai H, Duan X et al (2015) Aberrant expression and potential therapeutic target of lysophosphatidic acid receptor 3 in triple-negative breast cancers. Clin Exp Med 15:371–380

    Article  CAS  PubMed  Google Scholar 

  29. Yang M, Zhong WW, Srivastava N et al (2005) G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proc Natl Acad Sci USA 102:6027–6032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao PF, Wu S, Li Y et al (2020) LPA receptor1 antagonists as anticancer agents suppress human lung tumours. Eur J Pharmacol 868:172886

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Kant S, Singh SM (2013) alpha-Cyano-4-hydroxycinnamate induces apoptosis in Dalton’s lymphoma cells: role of altered cell survival-regulatory mechanisms. Anticancer Drugs 24:158–171

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Kant S, Singh SM (2013) Targeting monocarboxylate transporter by alpha-cyano-4-hydroxycinnamate modulates apoptosis and cisplatin resistance of Colo205 cells: implication of altered cell survival regulation. Apoptosis 18:1574–1585

    Article  CAS  PubMed  Google Scholar 

  33. Jaiswara PK, Gupta VK, Sonker P et al (2020) Nimbolide induces cell death in T lymphoma cells: implication of altered apoptosis and glucose metabolism. Environ Toxicol. https://doi.org/10.1002/tox.23067

    Article  PubMed  Google Scholar 

  34. Somoza B, Guzman R, Cano V et al (2007) Induction of cardiac uncoupling protein-2 expression and adenosine 5’-monophosphate-activated protein kinase phosphorylation during early states of diet-induced obesity in mice. Endocrinology 148:924–931

    Article  CAS  PubMed  Google Scholar 

  35. Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412

    CAS  PubMed  Google Scholar 

  36. Kant S, Kumar A, Singh SM (2014) Bicarbonate transport inhibitor SITS modulates pH homeostasis triggering apoptosis of Dalton’s lymphoma: implication of novel molecular mechanisms. Mol Cell Biochem 397:167–178

    Article  CAS  PubMed  Google Scholar 

  37. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  38. Kumar A, Kant S, Singh SM (2013) Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: a role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol Appl Pharmacol 273:196–208

    Article  CAS  PubMed  Google Scholar 

  39. Yadav S, Pandey SK, Goel Y et al (2018) Protective and recuperative effects of 3-bromopyruvate on immunological, hepatic and renal homeostasis in a murine host bearing ascitic lymphoma: Implication of niche dependent differential roles of macrophages. Biomed Pharmacother 99:970–985

    Article  CAS  PubMed  Google Scholar 

  40. Kuo CC, Ling HH, Chiang MC et al (2019) Metastatic colorectal cancer rewrites metabolic program through a Glut3-YAP-dependent signaling circuit. Theranostics 9:2526–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Voelxen NF, Blatt S, Knopf P et al (2018) Comparative metabolic analysis in head and neck cancer and the normal gingiva. Clin Oral Investig 22:1033–1043

    Article  PubMed  Google Scholar 

  42. Yang C, Xu W, Gong J, Chai F, Cui D, Liu Z (2020) Six1 overexpression promotes glucose metabolism and invasion through regulation of GLUT3, MMP2 and snail in thyroid cancer cells. Onco Targets Ther 13:4855–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhuang Y, Zhao J, Xu X, Bi L (2018) Downregulation of GLUT3 promotes apoptosis and chemosensitivity of acute myeloid leukemia cells via EGFR signaling. Arch Iran Med 21:73–78

    PubMed  Google Scholar 

  44. Murray CM, Hutchinson R, Bantick JR et al (2005) Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol 1:371–376

    Article  CAS  PubMed  Google Scholar 

  45. Whiteside TL (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16:3–15

    Article  CAS  PubMed  Google Scholar 

  46. Yan-Li L, Kang-Sheng G, Yue-Yin P, Yang J, Zhi-Min Z (2014) The lower peripheral blood lymphocyte/monocyte ratio assessed during routine follow-up after standard first-line chemotherapy is a risk factor for predicting relapse in patients with diffuse large B-cell lymphoma. Leuk Res 38:323–328

    Article  PubMed  Google Scholar 

  47. Tadmor T, Bari A, Sacchi S et al (2014) Monocyte count at diagnosis is a prognostic parameter in diffuse large B-cell lymphoma: results from a large multicenter study involving 1191 patients in the pre- and post-rituximab era. Haematologica 99:125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol 16:356–371

    Article  CAS  PubMed  Google Scholar 

  49. Shanker A, Singh SM, Sodhi A (2000) Ascitic growth of a spontaneous transplantable T cell lymphoma induces thymic involution. 2. Induction of apoptosis in thymocytes. Tumour Biol 21:315–327

    Article  CAS  PubMed  Google Scholar 

  50. Konda S, Smith RT (1973) The effects of tumor bearing upon changes in cell distribution and membrane antigen characteristics in murine spleen and thymus cell subpopulations. Cancer Res 33:1878–1884

    CAS  PubMed  Google Scholar 

  51. Ahmed SA, Sriranganathan N (1994) Differential effects of dexamethasone on the thymus and spleen: alterations in programmed cell death, lymphocyte subsets and activation of T cells. Immunopharmacology 28:55–66

    Article  CAS  PubMed  Google Scholar 

  52. Prenek L, Boldizsar F, Kugyelka R et al (2017) The regulation of the mitochondrial apoptotic pathway by glucocorticoid receptor in collaboration with Bcl-2 family proteins in developing T cells. Apoptosis 22:239–253

    Article  CAS  PubMed  Google Scholar 

  53. Majumdar S, Adiga V, Raghavan A, Rananaware SR, Nandi D (2019) Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy. Immunology 157:21–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zaleskis G, Berleth E, Verstovsek S, Ehrke MJ, Mihich E (1994) Doxorubicin-induced DNA degradation in murine thymocytes. Mol Pharmacol 46:901–908

    CAS  PubMed  Google Scholar 

  55. Walker PR, Smith C, Youdale T, Leblanc J, Whitfield JF, Sikorska M (1991) Topoisomerase II-reactive chemotherapeutic drugs induce apoptosis in thymocytes. Cancer Res 51:1078–1085

    CAS  PubMed  Google Scholar 

  56. Ross SH, Cantrell DA (2018) Signaling and function of interleukin-2 in T lymphocytes. Annu Rev Immunol 36:411–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang T, Zhou C, Ren S (2016) Role of IL-2 in cancer immunotherapy. Oncoimmunology 5:e1163462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ (2018) Interferon-Gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol 9:847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95–109

    Article  CAS  PubMed  Google Scholar 

  60. Eggert T, Medina-Echeverz J, Kapanadze T, Kruhlak MJ, Korangy F, Greten TF (2014) Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage. PLoS ONE 9:e112717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cohen LJ, Rennke HG, Laubach JP, Humphreys BD (2010) The spectrum of kidney involvement in lymphoma: a case report and review of the literature. Am J Kidney Dis 56:1191–1196

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chakraborty R, Mukkamalla SK, Gutzmore G, Chan HC (2015) A case of Hodgkin’s lymphoma with severely impaired liver function treated successfully with gemcitabine followed by ABVD. J Blood Med 6:93–97

    Article  PubMed  PubMed Central  Google Scholar 

  63. Longchar A, Prasad SB (2015) Biochemical changes associated with ascorbic acid–cisplatin combination therapeutic efficacy and protective effect on cisplatin-induced toxicity in tumor-bearing mice. Toxicol Rep 2:489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shivakumar P, Rani MU, Reddy AG, Anjaneyulu Y (2012) A study on the toxic effects of doxorubicin on the histology of certain organs. Toxicol Int 19:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Inoue K, Nagasawa Y, Yamamoto R et al (2009) Severe adverse effects of 5-fluorouracil in S-1 were lessened by haemodialysis due to elimination of the drug. NDT Plus 2:152–154

    PubMed  Google Scholar 

  66. Gelen V, Sengul E, Yildirim S, Atila G (2018) The protective effects of naringin against 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Iran J Basic Med Sci 21:404–410

    PubMed  PubMed Central  Google Scholar 

  67. Park HS, McIntosh L, Braschi-Amirfarzan M, Shinagare AB, Krajewski KM (2017) T-cell non-Hodgkin lymphomas: spectrum of disease and the role of imaging in the management of common subtypes. Korean J Radiol 18:71–83

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rizvi MA, Evens AM, Tallman MS, Nelson BP, Rosen ST (2006) T-cell non-Hodgkin lymphoma. Blood 107:1255–1264

    Article  CAS  PubMed  Google Scholar 

  69. Lone W, Alkhiniji A, Manikkam Umakanthan J, Iqbal J (2018) Molecular insights into pathogenesis of peripheral T cell lymphoma: a review. Curr Hematol Malig Rep 13:318–328

    Article  PubMed  Google Scholar 

  70. Mukherjee A, Ma Y, Yuan F et al (2015) Lysophosphatidic acid up-regulates hexokinase II and glycolysis to promote proliferation of ovarian cancer cells. Neoplasia 17:723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rogers LC, Davis RR, Said N, Hollis T, Daniel LW (2018) Blocking LPA-dependent signaling increases ovarian cancer cell death in response to chemotherapy. Redox Biol 15:380–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sui Y, Yang Y, Wang J et al (2015) Lysophosphatidic acid inhibits apoptosis induced by cisplatin in cervical cancer cells. Biomed Res Int 2015:598386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Iino J, Osada M, Kurano M et al (2014) Platelet-derived sphingosine 1-phosphate induces migration of Jurkat T cells. Lipids Health Dis 13:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ishdorj G, Graham BA, Hu X et al (2008) Lysophosphatidic acid protects cancer cells from histone deacetylase (HDAC) inhibitor-induced apoptosis through activation of HDAC. J Biol Chem 283:16818–16829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Venkatraman G, Benesch MG, Tang X, Dewald J, McMullen TP, Brindley DN (2015) Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB J 29:772–785

    Article  CAS  PubMed  Google Scholar 

  76. Lee SJ, No YR, Dang DT et al (2013) Regulation of hypoxia-inducible factor 1alpha (HIF-1alpha) by lysophosphatidic acid is dependent on interplay between p53 and Kruppel-like factor 5. J Biol Chem 288:25244–25253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang J, Li Y, Wang C et al (2020) Lysophosphatidic acid induces apoptosis of PC12 cells through LPA1 receptor/LPA2 receptor/MAPK signaling pathway. Front Mol Neurosci 13:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chien HY, Lu CS, Chuang KH, Kao PH, Wu YL (2015) Attenuation of LPS-induced cyclooxygenase-2 and inducible NO synthase expression by lysophosphatidic acid in macrophages. Innate Immun 21:635–646

    Article  CAS  PubMed  Google Scholar 

  79. Ha JH, Radhakrishnan R, Jayaraman M et al (2018) LPA induces metabolic reprogramming in ovarian cancer via a pseudohypoxic response. Cancer Res 78:1923–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Radhakrishnan R, Ha JH, Jayaraman M et al (2019) Ovarian cancer cell-derived lysophosphatidic acid induces glycolytic shift and cancer-associated fibroblast-phenotype in normal and peritumoral fibroblasts. Cancer Lett 442:464–474

    Article  CAS  PubMed  Google Scholar 

  81. Boidot R, Vegran F, Meulle A et al (2012) Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 72:939–948

    Article  CAS  PubMed  Google Scholar 

  82. Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    Article  CAS  PubMed  Google Scholar 

  83. Li L, Zhu L, Hao B et al (2017) iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget 8:33047–33063

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mortara L, Balza E, Bruno A, Poggi A, Orecchia P, Carnemolla B (2018) Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol 9:2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ptacin JL, Caffaro CE, Ma L et al (2021) An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat Commun 12:4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim J, Kang S, Kim KW et al (2021) Nanoparticle delivery of recombinant IL-2 (BALLkine-2) achieves durable tumor control with less systemic adverse effects in cancer immunotherapy. Biomaterials 280:121257

    Article  PubMed  CAS  Google Scholar 

  87. Bhuiyan AM, Dougan M (2021) Engineering T cell memory for antitumor immunity. Trends Pharmacol Sci 43:1

    Article  PubMed  CAS  Google Scholar 

  88. Gottlieb DJ, Brenner MK, Heslop HE et al (1989) A phase I clinical trial of recombinant interleukin 2 following high dose chemo-radiotherapy for haematological malignancy: applicability to the elimination of minimal residual disease. Br J Cancer 60:610–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martinez-Sabadell A, Arenas EJ, Arribas J (2021) IFN-gamma signaling in natural and therapy-induced anti-tumor responses. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-3226

    Article  Google Scholar 

Download references

Acknowledgements

The fellowship to Vishal Kumar Gupta is supported by a project (ECR/2016/001117) sanctioned by SERB, New Delhi. The authors thank the Interdisciplinary School of Life Science (ISLS), BHU, Varanasi for fluorescence microscopy and gel documentation system. The authors are highly thankful to Prof. Sukh Mahendra Singh (School of Biotechnology, Institute of Science, Banaras Hindu University) for his valuable inputs and for providing his lab facility for ELISA. Funding from the Department of Science & Technology, New Delhi, India, in the form of the Early Career Research Award (ECR/2016/001117) is highly acknowledged. Financial support of the Institute of Eminence (IoE) (6031) from Banaras Hindu University, India, is highly acknowledged. We also acknowledge the UGC-CAS and DST-FIST program to the Department of Zoology, Banaras Hindu University, India.

Funding

This work was supported by SERB, New Delhi, India [Project no. ECR/2016/001117].

Author information

Authors and Affiliations

Authors

Contributions

The experiments of this study were designed by AK and VKG. VKG has performed the experiments. AK and VKG analyzed the data. The manuscript was written by AK and VKG. AK and VKG read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V.K., Kumar, A. Targeting lysophosphatidic acid receptor with Ki16425 impedes T cell lymphoma progression through apoptosis induction, glycolysis inhibition, and activation of antitumor immune response. Apoptosis 27, 382–400 (2022). https://doi.org/10.1007/s10495-022-01723-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01723-2

Keywords