Skip to main content

Advertisement

Log in

Low TLR9 expression defines an aggressive subtype of triple-negative breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Toll-like receptor-9 (TLR9) is a DNA receptor widely expressed in cancers. Although synthetic TLR9 ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology is unclear. We discovered that low tumor TLR9 expression is associated with significantly shortened disease-specific survival in patients with triple negative but not with ER+ breast cancers. A likely mechanism of this clinical finding involves differential responses to hypoxia. Our pre-clinical studies indicate that while TLR9 expression is hypoxia-regulated, low TLR9 expression has different effects on triple negative and ER+ breast cancer invasion in hypoxia. Hypoxia-induced invasion is augmented by TLR9 siRNA in triple negative, but not in ER+ breast cancer cells. This is possibly due to differential TLR9-regulated TIMP-3 expression, which remains detectable in ER+ cells but disappears from triple-negative TLR9 siRNA cells in hypoxia. Our results demonstrate a novel role for this innate immunity receptor in cancer biology and suggest that TLR9 expression may be a novel marker for triple-negative breast cancer patients who are at a high risk of relapse. Furthermore, these results suggest that interventions or events, which induce hypoxia or down-regulate TLR9 expression in triple-negative breast cancer cells may actually induce their spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85(2):85–95

    Article  PubMed  CAS  Google Scholar 

  2. Wagner H (2004) The immunobiology of the TLR9 subfamily. Trends Immunol 25(7):381–386

    Article  PubMed  CAS  Google Scholar 

  3. Shi Z, Cai Z, Sanchez A, Zhang T, Wen S, Wang J, Yang J, Fu S, Zhang D (2011) A novel Toll-like receptor that recognizes vesicular stomatitis virus. J Biol Chem 286(6):4517–4524

    Article  PubMed  CAS  Google Scholar 

  4. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569

    Article  PubMed  CAS  Google Scholar 

  5. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318):972–976

    Article  PubMed  CAS  Google Scholar 

  6. Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ, Segal DM (2004) TLR9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol 173(2):1179–1183

    PubMed  CAS  Google Scholar 

  7. Nishiya T, DeFranco AL (2004) Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J Biol Chem 279(18):19008–19017

    Article  PubMed  CAS  Google Scholar 

  8. Schmausser B, Andrulis M, Endrich S, Lee SK, Josenhans C, Muller-Hermelink HK, Eck M (2004) Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin Exp Immunol 136(3):521–526

    Article  PubMed  CAS  Google Scholar 

  9. Ilvesaro JM, Merrell MA, Swain TM, Davidson J, Zayzafoon M, Harris KW, Selander KS (2007) Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate 67(7):774–781

    Article  PubMed  CAS  Google Scholar 

  10. Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E, Chen D, Shackley B, Harris KW, Selander KS (2006) Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res 4(7):437–447

    Article  PubMed  CAS  Google Scholar 

  11. Droemann D, Albrecht D, Gerdes J, Ulmer AJ, Branscheid D, Vollmer E, Dalhoff K, Zabel P, Goldmann T (2005) Human lung cancer cells express functionally active Toll-like receptor 9. Respir Res 6:1

    Article  PubMed  Google Scholar 

  12. Schmausser B, Andrulis M, Endrich S, Muller-Hermelink HK, Eck M (2005) Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol 295(3):179–185

    Article  PubMed  CAS  Google Scholar 

  13. Ren T, Xu L, Jiao S, Wang Y, Cai Y, Liang Y, Zhou Y, Zhou H, Wen Z (2009) TLR9 signaling promotes tumor progression of human lung cancer cell in vivo. Pathol Oncol Res 15(4):623–630

    Article  PubMed  CAS  Google Scholar 

  14. Ilvesaro JM, Merrell MA, Li L, Wakchoure S, Graves D, Brooks S, Rahko E, Jukkola-Vuorinen A, Vuopala KS, Harris KW, Selander KS (2008) Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion. Mol Cancer Res 6(10):1534–1543

    Article  PubMed  CAS  Google Scholar 

  15. Jukkola-Vuorinen A, Rahko E, Vuopala KS, Desmond R, Lehenkari PP, Harris KW, Selander KS (2008) Toll-like receptor-9 expression is inversely correlated with estrogen receptor status in breast cancer. J Innate Immun 1(1):59–68

    Article  PubMed  Google Scholar 

  16. Väisänen MR, Väisänen T, Jukkola-Vuorinen A, Vuopala KS, Desmond R, Selander KS, Vaarala MH (2010) Expression of toll-like receptor-9 is increased in poorly differentiated prostate tumors. Prostate 70(8):817–824

    Article  PubMed  Google Scholar 

  17. Berger R, Fiegl H, Goebel G, Obexer P, Ausserlechner M, Doppler W, Hauser-Kronberger C, Reitsamer R, Egle D, Reimer D, Muller-Holzner E, Jones A, Widschwendter M (2010) Toll-like receptor 9 expression in breast and ovarian cancer is associated with poorly differentiated tumors. Cancer Sci 101(4):1059–1066

    Article  PubMed  CAS  Google Scholar 

  18. Takala H, Kauppila JH, Soini Y, Selander KS, Vuopala KS, Lehenkari PP, Saarnio J, Karttunen TJ (2011) Toll-like receptor 9 is a novel biomarker for esophageal squamous cell dysplasia and squamous cell carcinoma progression. J Innate Immun 3(6):631–638

    Article  PubMed  CAS  Google Scholar 

  19. Gonzalez-Reyes S, Marin L, Gonzalez L, Gonzalez LO, del Casar JM, Lamelas ML, Gonzalez-Quintana JM, Vizoso FJ (2010) Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer 10:665

    Article  PubMed  CAS  Google Scholar 

  20. Ruan K, Song G, Ouyang G (2009) Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 107(6):1053–1062

    Article  PubMed  CAS  Google Scholar 

  21. Li XF, Carlin S, Urano M, Russell J, Ling CC, O’Donoghue JA (2007) Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy. Cancer Res 67(16):7646–7653

    Article  PubMed  CAS  Google Scholar 

  22. Tan EY, Yan M, Campo L, Han C, Takano E, Turley H, Candiloro I, Pezzella F, Gatter KC, Millar EK, O’Toole SA, McNeil CM, Crea P, Segara D, Sutherland RL, Harris AL, Fox SB (2009) The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy. Br J Cancer 100(2):405–411

    Article  PubMed  CAS  Google Scholar 

  23. Yan M, Rayoo M, Takano EA, Fox SB (2009) BRCA1 tumours correlate with a HIF-1alpha phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression. Br J Cancer 101(7):1168–1174

    Article  PubMed  CAS  Google Scholar 

  24. Kuhlicke J, Frick JS, Morote-Garcia JC, Rosenberger P, Eltzschig HK (2007) Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia. PLoS One 2(12):e1364

    Article  PubMed  Google Scholar 

  25. Pringle KG, Kind KL, Sferruzzi-Perri AN, Thompson JG, Roberts CT (2010) Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update 16(4):415–431

    Article  PubMed  CAS  Google Scholar 

  26. Munoz-Najar UM, Neurath KM, Vumbaca F, Claffey KP (2006) Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25(16):2379–2392

    Article  PubMed  CAS  Google Scholar 

  27. Yasuda H, Leelahavanichkul A, Tsunoda S, Dear JW, Takahashi Y, Ito S, Hu X, Zhou H, Doi K, Childs R, Klinman DM, Yuen PS, Star RA ((2008)) Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 294(5):F1050–F1058

    Article  Google Scholar 

  28. Chaudary N, Hill RP (2006) Hypoxia and metastasis in breast cancer. Breast Dis 26:55–64

    PubMed  CAS  Google Scholar 

  29. Ronkainen H, Hirvikoski P, Kauppila S, Vuopala KS, Paavonen TK, Selander KS, Vaarala MH (2011) Absent Toll-like receptor-9 expression predicts poor prognosis in renal cell carcinoma. J Exp Clin Cancer Res 30:84

    Article  PubMed  CAS  Google Scholar 

  30. Sandholm J, Kauppila JH, Pressey C, Tuomela J, Jukkola-Vuorinen A, Vaarala M, Johnson MR, Harris KW, Selander KS (2012) Estrogen receptor-alpha and sex steroid hormones regulate Toll-like receptor-9 expression and invasive function in human breast cancer cells. Breast Cancer Res Treat 132(2):411–419

    Article  PubMed  CAS  Google Scholar 

  31. Wang J, Shao Y, Bennett TA, Shankar RA, Wightman PD, Reddy LG (2006) The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem 281(49):37427–37434

    Article  PubMed  CAS  Google Scholar 

  32. DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9(4):212

    Article  PubMed  Google Scholar 

  33. Sinha S, Koul N, Dixit D, Sharma V, Sen E (2011) IGF-1 induced HIF-1alpha-TLR9 cross talk regulates inflammatory responses in glioma. Cell Signal 23(11):1869–1875

    Article  PubMed  CAS  Google Scholar 

  34. Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ, van der Wall E (2003) Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97(6):1573–1581

    Article  PubMed  Google Scholar 

  35. Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67(2):563–572

    Article  PubMed  CAS  Google Scholar 

  36. Kimbro KS, Simons JW (2006) Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 13(3):739–749

    Article  PubMed  CAS  Google Scholar 

  37. Cayre A, Rossignol F, Clottes E, Penault-Llorca F (2003) aHIF but not HIF-1alpha transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res 5(6):R223–R230

    Article  PubMed  CAS  Google Scholar 

  38. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948

    Article  PubMed  CAS  Google Scholar 

  39. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  PubMed  CAS  Google Scholar 

  40. Wärri AM, Huovinen RL, Laine AM, Martikainen PM, Härkönen PL (1993) Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. J Natl Cancer Inst 85(17):1412–1418

    Article  PubMed  Google Scholar 

  41. Isola J, Tanner M, Forsyth A, Cooke TG, Watters AD, Bartlett JM (2004) Interlaboratory comparison of HER-2 oncogene amplification as detected by chromogenic and fluorescence in situ hybridization. Clin Cancer Res 10(14):4793–4798

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Lapland Cultural Foundation (K.S.V., A.J-V., K.S.S.), Northern Finnish Duodecim Foundation (A.J-V), the Finnish Medical Foundation (P.K.), Oulu University Scholarship Foundation (J.H.K.), Cancer Foundation of Northern Finland (J.H.K.), Elsa U. Pardee Foundation (K.S.S) and Department of Defense (K.S.S., D.G.).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katri S. Selander.

Additional information

Johanna Tuomela, Jouko Sandholm, and Peeter Karihtala have equally contributed to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuomela, J., Sandholm, J., Karihtala, P. et al. Low TLR9 expression defines an aggressive subtype of triple-negative breast cancer. Breast Cancer Res Treat 135, 481–493 (2012). https://doi.org/10.1007/s10549-012-2181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2181-7

Keywords