Abstract
Background
Voltage-gated sodium channels (VGSCs) are essential for generating and propagating action potentials in excitable cells. They are considered to be promising potential targets for analgesics acting on nociceptive neurons. However, the translation of animal model analgesic data to humans makes VGSCs-targeting analgesic drug development challenging. Starting with human experience to find analgesics can reduce such failures. Traditional Chinese medicine (TCM), a traditional medical system, has rich human experience of analgesics, which means many Traditional Chinese Medicine Herbs (TCMH) are worth exploring for analgesic drug development. However, studies of the analgesic mechanisms of TCMH need to be conducted at the cellular and molecular level for a VGSC perspective.
Purpose
In this review, we provide an overview of the TCMH analgesics and molecules from TCMH, that act on VGSCs, especially subtype Nav1.3, Nav1.7, and Nav1.8, along with a brief discussion on pharmaceutical potential for pain management. We also provide references for Chinese medicine to study pain relief mechanisms at the molecular level of sodium ion channels.
Methods
Using Web of Science, the PubMed, and China National Knowledge Infrastructure databases, we conducted a comprehensive search of literature and data on TCMH and VGSCs published before October 2024.
Conclusion
While Navl.3, Navl.7, Navl.8 and Navl.9 are involved in the development and maintenance of pain, Navl.8 can be studied as a potential drug target. The traditional Chinese medicine herbs involved sodium ion channels are primarily categorized into seven types, including 30 well-defined natural ingredients and 33 TCMH extracts. Studying the interactions between the components of TCMH is an important prerequisite for further exploration of how a specific analgesic TCM or TCM formula modulates ion channels or whether it binds to specific sites on these channels.
Graphic abstract





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- AGAP:
-
Antitumor–analgesic peptide
- Amm:
-
Androctonus mauretanicus mauretanicus
- ANEP:
-
Anti-neuroexcitation peptide
- BLA:
-
Bulleyaconitine A
- GJG:
-
Goshajinkigan
- HNTX-IV:
-
Hainantoxin-IV
- HWTX-IV:
-
Huwentoxin-IV
- JZTX-34:
-
Jingzhaotoxin-34
- LCA:
-
Licochalcone A
- MkTx-3:
-
Makatoxin-3
- NSAIDs:
-
Non-steroidal anti-inflammatory drugs
- PA:
-
Processed aconite root
- PDPN:
-
Painful diabetic peripheral neuropathy
- ProTxII:
-
Protoxin-II
- RJ-III:
-
Rhodojaponin III
- SNI:
-
Spared nerve injury
- Ssm6a:
-
µ-SLPTX-Ssm6a
- TCM:
-
Traditional Chinese medicine
- TCMH:
-
Traditional Chinese medicine herbs
- TTX:
-
Tetrodotoxin
- TTX-R:
-
Tetrodotoxin-resistance
- TTX-S:
-
Tetrodotoxin-sensitive
- VGSCs:
-
Voltage-gated sodium channels
References
Abbas N, Gaudioso-Tyzra C, Bonnet C, Gabriac M, Amsalem M, Lonigro A, Padilla F, Crest M, Martin-Eauclaire MF, Delmas P (2013) The scorpion toxin Amm VIII induces pain hypersensitivity through gain-of-function of TTX-sensitive Na+ channels. Pain 154(8):1204–1215. https://doi.org/10.1016/j.pain.2013.03.037
Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, Nassar MA, Dickenson AH, Wood JN (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321(5889):702–705. https://doi.org/10.1126/science.1156916
Agnew WS, Moore AC, Levinson SR, Raftery MA (1980) Identification of a large molecular weight peptide associated with a tetrodotoxin binding protein from the electroplax of Electrophorus electricus. Biochem Biophys Res Commun 92(3):860–866. https://doi.org/10.1016/0006-291x(80)90782-2
Ai L, Han Y, Ji R, Zhou D, Zhang W, Xie A, Zhai X, Cao J, Zhang H (2023) Research progress in pain treatment and analgesic targets. Chin J Pain Med 29(7):484–494. https://doi.org/10.3969/j.issn.1006-9852.2023.07.002
Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379(6562):257–262. https://doi.org/10.1038/379257a0
Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2(6):541–548. https://doi.org/10.1038/9195
Alami M, Vacher H, Bosmans F, Devaux C, Rosso JP, Bougis PE, Tytgat J, Darbon H, Martin-Eauclaire MF (2003) Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels. Biochem J 375(3):551–560. https://doi.org/10.1042/BJ20030688
Baker MD, Wood JN (2001) Involvement of Na+ channels in pain pathways. Trends Pharmacol Sci 22(1):27–31. https://doi.org/10.1016/s0165-6147(00)01585-6
Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB (2000) Potent analgesic effects of GDNF in neuropathic pain states. Science 290(5489):124–127. https://doi.org/10.1126/science.290.5489.124
Cai T, Luo J, Meng E, Ding J, Liang S, Wang S, Liu Z (2015) Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels. Peptides 68:148–156. https://doi.org/10.1016/j.peptides.2014.09.005
Cao ZY, Mi ZM, Cheng GF, Shen WQ, Xiao X, Liu XM, Liang XT, Yu DQ (2004) Purification and characterization of a new peptide with analgesic effect from the scorpion Buthus martensi Karch. J Pept Res 64(1):33–41. https://doi.org/10.1111/j.1399-3011.2004.00164.x
Cao Y, Zhang M, Yu H, Lu C, Liao S, Tang W (2003) Study on determination of resveratrol in different plants and same plant tissues. Hunan Forestry Sci Technol 30(4):3. https://doi.org/10.3969/j.issn.1003-5710.2003.04.011
Chen J, Feng XH, Shi J, Tan ZY, Bai ZT, Liu T, Ji YH (2006) The anti-nociceptive effect of BmK AS, a scorpion active polypeptide, and the possible mechanism on specifically modulating voltage-gated Na+ currents in primary afferent neurons. Peptides 27(9):2182–2192. https://doi.org/10.1016/j.peptides.2006.03.026
Chen Y, Xu E, Sang M, Wang Z, Zhang Y, Ye J, Zhou Q, Zhao C, Hu C, Lu W, Cao P (2022) Makatoxin-3, a thermostable Nav1.7 agonist from Buthus martensii Karsch (BmK) scorpion elicits non-narcotic analgesia in inflammatory pain models. J Ethnopharmacol 288:114998. https://doi.org/10.1016/j.jep.2022.114998
Chen J, Zhang Y, Rong M, Zhao L, Jiang L, Zhang D, Wang M, Xiao Y, Liang S (2009) Expression and characterization of jingzhaotoxin-34, a novel neurotoxin from the venom of the tarantula Chilobrachys jingzhao. Peptides 30(6):1042–1048. https://doi.org/10.1016/j.peptides.2009.02.018
Choi SS, Han EJ, Han KJ, Lee HK, Suh HW (2003) Antinociceptive effects of ginsenosides injected intracerebroventricularly or intrathecally in substance P-induced pain model. Planta Med 69(11):1001–1004. https://doi.org/10.1055/s-2003-45145
Choi SJ, Kim TH, Shin YK, Lee CS, Park M, Lee HS, Song JH (2008) Effects of a polyacetylene from Panax ginseng on Na+ currents in rat dorsal root ganglion neurons. Brain Res 1191:75–83. https://doi.org/10.1016/j.brainres.2007.11.047
Cohen SP, Vase L, Hooten WM (2021) Chronic pain: an update on burden, best practices, and new advances. Lancet 397(10289):2082–2097. https://doi.org/10.1016/S0140-6736(21)00393-7
Cregg R, Momin A, Rugiero F, Wood JN, Zhao J (2010) Pain channelopathies. J Physiol 588(11):1897–1904. https://doi.org/10.1113/jphysiol.2010.187807
Cummins TR, Dib-Hajj SD, Waxman SG (2004) Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 24(38):8232–8236. https://doi.org/10.1523/JNEUROSCI.2695-04.2004
Díaz-Rodríguez L, García-Martínez O, Morales MA, Rodríguez-Pérez L, Rubio-Ruiz B, Ruiz C (2012) Effects of indomethacin, nimesulide, and diclofenac on human MG-63 osteosarcoma cell line. Biol Res Nurs 14(1):98–107. https://doi.org/10.1177/1099800411398933
Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN (2012) Neurological perspectives on voltage-gated sodium channels. Brain 135(9):2585–2612. https://doi.org/10.1093/brain/aws225
Emery EC, Luiz AP, Wood JN (2016) Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 20(8):975–983. https://doi.org/10.1517/14728222.2016.1162295
Fan C, Wolking S, Lehmann-Horn F, Hedrich UB, Freilinger T, Lerche H, Borck G, Kubisch C, Jurkat-Rott K (2016) Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia 36(13):1238–1247. https://doi.org/10.1177/0333102415608360
Fayaz A, Croft P, Langford RM, Donaldson LJ, Jones GT (2016) Prevalence of chronic pain in the UK: a systematic review and meta-analysis of population studies. BMJ Open 6(6):e010364. https://doi.org/10.1136/bmjopen-2015-010364
Feng YJ, Feng Q, Tao J, Zhao R, Ji YH (2015) Allosteric interactions between receptor site 3 and 4 of voltage-gated sodium channels: a novel perspective for the underlying mechanism of scorpion sting-induced pain. J Venom Anim Toxins Incl Trop Dis 21:42. https://doi.org/10.1186/s40409-015-0043-6
Frosio A, Micaglio E, Polsinelli I, Calamaio S, Melgari D, Prevostini R, Ghiroldi A, Binda A, Carrera P, Villa M, Mastrocinque F, Presi S, Salerno R, Boccellino A, Anastasia L, Ciconte G, Ricagno S, Pappone C, Rivolta I (2023) Unravelling novel SCN5a mutations linked to brugada syndrome: functional, structural, and genetic insights. Int J Mol Sci 24(20):15089. https://doi.org/10.3390/ijms242015089
Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894. https://doi.org/10.1146/annurev.physiol.63.1.871
Gu RR, Meng XH, Zhang Y, Xu HY, Zhan L, Gao ZB, Yang JL, Zheng YM (2022) (-)-Naringenin 4,7-dimethyl Ether isolated from Nardostachys jatamansi relieves pain through inhibition of multiple channels. Molecules 27(5):1735. https://doi.org/10.3390/molecules27051735
Hains BC, Waxman SG (2007) Sodium channel expression and the molecular pathophysiology of pain after SCI. Prog Brain Res 161:195–203. https://doi.org/10.1016/S0079-6123(06)61013-3
Haroun R, Gossage SJ, Luiz AP, Arcangeletti M, Sikandar S, Zhao J, Cox JJ, Wood JN (2023) Chemogenetic silencing of Nav1.8-positive sensory neurons reverses chronic neuropathic and bone cancer pain in FLEx PSAM4-GlyR Mice. Eneuro. https://doi.org/10.1523/ENEURO.0151-23.2023
Hill R (2000) NK1 (substance P) receptor antagonists-why are they not analgesic in humans? Trends Pharmacol Sci 21(7):244–246. https://doi.org/10.1016/s0165-6147(00)01502-9
Hu D, Barajas-Martínez H, Pfeiffer R, Dezi F, Pfeiffer J, Buch T, Betzenhauser MJ, Belardinelli L, Kahlig KM, Rajamani S, DeAntonio HJ, Myerburg RJ, Ito H, Deshmukh P, Marieb M, Nam GB, Bhatia A, Hasdemir C, Haïssaguerre M, Veltmann C, Schimpf R, Borggrefe M, Viskin S, Antzelevitch C (2014) Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol 64(1):66–79. https://doi.org/10.1016/j.jacc.2014.04.032
Iseppon F, Kanellopoulos AH, Tian N, Zhou J, Caan G, Chiozzi R, Thalassinos K, Çubuk C, Lewis MJ, Cox JJ, Zhao J, Woods CG, Wood JN (2024) Sodium channels Nav1.7, Nav1.8 and pain; two distinct mechanisms for Nav1.7 null analgesia. Neurobiol Pain 16:100168. https://doi.org/10.1016/j.ynpai.2024.100168
Isom LL (2001) Sodium channel beta subunits: anything but auxiliary. Neuroscientist 7(1):42–54. https://doi.org/10.1177/107385840100700108
Jia Q, Dong W, Zhang L, Yang X (2020) Activating Sirt1 by resveratrol suppresses Nav1.7 expression in DRG through miR-182 and alleviates neuropathic pain in rats. Channels (Austin) 14(1):69–78. https://doi.org/10.1080/19336950.2020.1732003
Jiang M, Zhao S, Yang S, Lin X, He X, Wei X, Song Q, Li R, Fu C, Zhang J, Zhang Z (2020) An “essential herbal medicine”-licorice: a review of phytochemicals and its effects in combination preparations. J Ethnopharmacol 249:112439. https://doi.org/10.1016/j.jep.2019.112439
Jones J, Correll DJ, Lechner SM, Jazic I, Miao X, Shaw D, Simard C, Osteen JD, Hare B, Beaton A, Bertoch T, Buvanendran A, Habib AS, Pizzi LJ, Pollak RA, Weiner SG, Bozic C, Negulescu P, White PF (2023) Selective Inhibition of Nav1.8 with VX-548 for Acute Pain. N Engl J Med 389(5):393–405. https://doi.org/10.1056/NEJMoa2209870
Jurkat-Rott K, Holzherr B, Fauler M, Lehmann-Horn F (2010) Sodium channelopathies of skeletal muscle result from gain or loss of function. Pflugers Arch 460(2):239–248. https://doi.org/10.1007/s00424-010-0814-4
Krueger J, Berg AT (2015) Incidence of Dravet Syndrome in a US Population. P Pediatr Neurol Briefs 29(12):92. https://doi.org/10.15844/pedneurbriefs-29-12-3
Lauxmann S, Boutry-Kryza N, Rivier C, Mueller S, Hedrich UB, Maljevic S, Szepetowski P, Lerche H, Lesca G (2013) An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na+current. Epilepsia 54(9):e117–e121. https://doi.org/10.1111/epi.12241
Leng J, Hou L, Deng L, Ju B (2018) Effect of dioscin in ChuanShan long extract on the expression of sodium channel gene in rats with painful diabetic peripheral neuropathy. Chin Arch Tradit Chin Med 36(10):2372–2374. https://doi.org/10.13193/j.issn.1673-7717.2018.10.017
Li X, Li H, Li S, Song N, Hou X, Zhou W, Cui Y, Ma L (2016b) Advances in study on resveratrol. Chin Tradit Herb Drugs 47(14):2568–2578. https://doi.org/10.7501/j.issn.0253-2670.2016.14.030
Li CL, Liu XF, Li GX, Ban MQ, Chen JZ, Cui Y, Zhang JH, Wu CF (2016a) Antinociceptive effects of AGAP, a recombinant neurotoxic polypeptide: possible involvement of the tetrodotoxin-resistant sodium channels in small dorsal root ganglia neurons. Front Pharmacol 7:496. https://doi.org/10.3389/fphar.2016.00496
Li X, Xu F, Xu H, Zhang S, Gao Y, Zhang H, Dong Y, Zheng Y, Yang B, Sun J, Zhang XC, Zhao Y, Jiang D (2022) Structural basis for modulation of human Nav1.3 by clinical drug and selective antagonist. Nat Commun 13(1):1286. https://doi.org/10.1038/s41467-022-28808-5
Liao Y, Anttonen AK, Liukkonen E, Gaily E, Maljevic S, Schubert S, Bellan-Koch A, Petrou S, Ahonen VE, Lerche H, Lehesjoki AE (2010) SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology 75(16):1454–1458. https://doi.org/10.1212/WNL.0b013e3181f8812e
Lin S, Wang X, Hu X, Zhao Y, Zhao M, Zhang J, Cui Y (2017) Recombinant expression, functional characterization of two scorpion venom toxins with three disulfide bridges from the Chinese Scorpion Buthus martensii Karsch. Protein Pept Lett 24(3):235–240. https://doi.org/10.2174/0929866524666170117142404
Liu X, Chen S, Yin S, Mei Z (2004) Effects of dragon’s blood resin and its component loureirin B on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons. Sci China C Life Sci 47(4):340–348. https://doi.org/10.1360/03yc0146
Liu H, Li P, Li M (2012a) Progress in the study of voltage-gated sodium channel Nav1.7 in pain. Basic Clin Med 32(12):1484–1487. https://doi.org/10.16352/j.issn.1001-6325.2012.12.008
Liu Y, Li D, Wu Z, Li J, Nie D, Xiang Y, Liu Z (2012b) A positively charged surface patch is important for hainantoxin-IV binding to voltage-gated sodium channels. J Pept Sci 18(10):643–649. https://doi.org/10.1002/psc.2451
Liu YF, Ma RL, Wang SL, Duan ZY, Zhang JH, Wu LJ, Wu CF (2003) Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii karsch in Escherichia coli. Protein Expr Purif 27(2):253–258. https://doi.org/10.1016/s1046-5928(02)00609-5
Liu T, Pang XY, Jiang F, Bai ZT, Ji YH (2008) Anti-nociceptive effects induced by intrathecal injection of BmK AS, a polypeptide from the venom of Chinese-scorpion Buthus martensi Karsch, in rat formalin test. J Ethnopharmacol 117(2):332–338. https://doi.org/10.1016/j.jep.2008.02.003
Liu Z, Shan Z, Yang H, Xing Y, Guo W, Cheng J, Jiang Y, Cai S, Wu C, Liu JA, Cheung CW, Pan Y (2024) Quercetin, main active ingredient of moutan cortex, alleviates chronic orofacial pain via block of voltage-gated sodium channel. Anesth Analg 138(6):1324–1336. https://doi.org/10.1213/ANE.0000000000006730
Liu ZR, Tao J, Dong BQ, Ding G, Cheng ZJ, He HQ, Ji YH (2012c) Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3. Neurosci Bull 28(3):209–221. https://doi.org/10.1007/s12264-012-1234-6
Loeser JD, Melzack R (1999) Pain: an overview. Lancet 353(9164):1607–1609. https://doi.org/10.1016/S0140-6736(99)01311-2
Luiz AP, Wood JN (2016) Sodium channels in pain and cancer: new therapeutic opportunities. Adv Pharmacol 75:153–178. https://doi.org/10.1016/bs.apha.2015.12.006
Lyu H, Boßelmann CM, Johannesen KM, Koko M, Ortigoza-Escobar JD, Aguilera-Albesa S, Garcia-Navas Núñez D, Linnankivi T, Gaily E, Van Ruiten HJA, Richardson R, Betzler C, Horvath G, Brilstra E, Geerdink N, Orsucci D, Tessa A, Gardella E, Fleszar Z, Schöls L, Lerche H, Møller RS, Liu Y (2023) Clinical and electrophysiological features of SCN8A variants causing episodic or chronic ataxia. EBioMedicine 98:104855. https://doi.org/10.1016/j.ebiom.2023.104855
Maggi L, Bonanno S, Altamura C, Desaphy JF (2021) Ion channel gene mutations causing skeletal muscle disorders: pathomechanisms and opportunities for therapy. Cells 10(6):1521. https://doi.org/10.3390/cells10061521
Meisler MH, Hill SF, Yu W (2021) Sodium channelopathies in neurodevelopmental disorders. Nat Rev Neurosci 22(3):152–166. https://doi.org/10.1038/s41583-020-00418-4
Meng D, Wang L, Du J, Chen J, Chen C, Xu W, Li C (2017) The analgesic activities of Stauntonia brachyanthera and YM11 through regulating inflammatory mediators and directly controlling the sodium channel prompt. Sci Rep 7(1):7574. https://doi.org/10.1038/s41598-017-07095-x
Meng X, Zhao M, Zhang J (2011) Voltage-gated sodium channels and pain. J Shenyang Pharm Univ 28(08):658–662. https://doi.org/10.14066/j.cnki.cn21-1349/r.2011.08.009
Merskey H, Bogduk N (1994) Classification of chronic pain, 2nd edn. IASP Press, Seattle
Momin A, Wood JN (2008) Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurobiol 18(4):383–388. https://doi.org/10.1016/j.conb.2008.08.017
Murray JK, Ligutti J, Liu D, Zou A, Poppe L, Li H, Andrews KL, Moyer BD, McDonough SI, Favreau P, Stöcklin R, Miranda LP (2015) Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Nav1.7 sodium channel. J Med Chem 58(5):2299–2314. https://doi.org/10.1021/jm501765v
Männikkö R, Wong L, Tester DJ, Thor MG, Sud R, Kullmann DM, Sweeney MG, Leu C, Sisodiya SM, FitzPatrick DR, Evans MJ, Jeffrey IJM, Tfelt-Hansen J, Cohen MC, Fleming PJ, Jaye A, Simpson MA, Ackerman MJ, Hanna MG, Behr ER, Matthews E (2018) Dysfunction of Nav1.4, a skeletal muscle voltage-gated sodium channel, in sudden infant death syndrome: a case-control study. Lancet 391(10129):1483–1492. https://doi.org/10.1016/S0140-6736(18)30021-7
Nah JJ, Hahn JH, Chung S, Choi S, Kim YI, Nah SY (2000) Effect of ginsenosides, active components of ginseng, on capsaicin-induced pain-related behavior. Neuropharmacology 39(11):2180–2184. https://doi.org/10.1016/s0028-3908(00)00048-4
Nakatani Y, Negoro K, Yamauchi M, Katasho M, Ishikura KI, Iwaki A, Tsukada K, Yamaguchi M, Uehara A, Yoshida M, Ishiuchi K, Makino T, Kitajima M, Ohsawa M, Amano T (2020) Neoline, an active ingredient of the processed aconite root in Goshajinkigan formulation, targets Nav1.7 to ameliorate mechanical hyperalgesia in diabetic mice. J Ethnopharmacol 259:112963. https://doi.org/10.1016/j.jep.2020.112963
Nassar MA, Levato A, Stirling LC, Wood JN (2005) Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol Pain 1:24. https://doi.org/10.1186/1744-8069-1-24
Oliveira CFB, Alves DP, Emerich BL, De Figueiredo SG, Cordeiro MDN, Borges MH, Richardson M, Pimenta AMC, Duarte IDG, De Lima ME (2019) Antinociceptive effect of PnTx4(5–5), a peptide from Phoneutria nigriventer spider venom, in rat models and the involvement of glutamatergic system. J Venom Anim Toxins Incl Trop Dis 25:e20190022. https://doi.org/10.1590/1678-9199-JVATITD-2019-0022
O’Malley HA, Hull JM, Clawson BC, Chen C, Owens-Fiestan G, Jameson MB, Aton SJ, Parent JM, Isom LL (2019) Scn1b deletion in adult mice results in seizures and SUDEP. Ann Clin Transl Neurol 6(6):1121–1126. https://doi.org/10.1002/acn3.785
Papale LA, Paul KN, Sawyer NT, Manns JR, Tufik S, Escayg A (2010) Dysfunction of the Scn8a voltage-gated sodium channel alters sleep architecture, reduces diurnal corticosterone levels, and enhances spatial memory. J Biol Chem 285(22):16553–16561. https://doi.org/10.1074/jbc.M109.090084
Patino GA, Brackenbury WJ, Bao Y, Lopez-Santiago LF, O’Malley HA, Chen C, Calhoun JD, Lafrenière RG, Cossette P, Rouleau GA, Isom LL (2011) Voltage-gated Na+ channel β1B: a secreted cell adhesion molecule involved in human epilepsy. J Neurosci 31(41):14577–14591. https://doi.org/10.1523/JNEUROSCI.0361-11.2011
Raouf R, Quick K, Wood JN (2010) Pain as a channelopathy. J Clin Invest 120(11):3745–3752. https://doi.org/10.1172/JCI43158
Remme CA (2013) Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol 591(17):4099–4116. https://doi.org/10.1113/jphysiol.2013.256461
Remme CA (2023) SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 378(1879):20220164. https://doi.org/10.1098/rstb.2022.0164
Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86(2):629–640. https://doi.org/10.1152/jn.2001.86.2.629
Schwarz N, Bast T, Gaily E, Golla G, Gorman KM, Griffiths LR, Hahn A, Hukin J, King M, Korff C, Miranda MJ, Møller RS, Neubauer B, Smith RA, Smol T, Striano P, Stroud B, Vaccarezza M, Kluger G, Lerche H, Fazeli W (2019) Clinical and genetic spectrum of SCN2A-associated episodic ataxia. Eur J Paediatr Neurol 23(3):438–447. https://doi.org/10.1016/j.ejpn.2019.03.001
Sexton JE, Cox JJ, Zhao J, Wood JN (2018) The genetics of pain: implications for therapeutics. Annu Rev Pharmacol Toxicol 58:123–142. https://doi.org/10.1146/annurev-pharmtox-010617-052554
Shao JH, Wang YQ, Wu XY, Jiang R, Zhang R, Wu CF, Zhang JH (2008) Cloning, expression, and pharmacological activity of BmK AS, an active peptide from scorpion Buthus martensii Karsch. Biotechnol Lett 30(1):23–29. https://doi.org/10.1007/s10529-007-9499-y
Song J, Jiang M, Jin Y, Li H, Li Y, Liu Y, Yu H, Huang X (2023) Phytol from Faeces Bombycis alleviated migraine pain by inhibiting Nav1.7 sodium channels. J Ethnopharmacol 306:116161. https://doi.org/10.1016/j.jep.2023.116161
Song Y, Liu Z, Zhang Q, Li C, Jin W, Liu L, Zhang J, Zhang J (2017) Investigation of binding modes and functional surface of scorpion toxins ANEP to sodium channels 1.7. Toxins (Basel) 9(12):387. https://doi.org/10.3390/toxins9120387
Sourbron J, Smolders I, De Witte P, Lagae L (2017) Pharmacological analysis of the anti-epileptic mechanisms of fenfluramine in scn1a Mutant Zebrafish. Front Pharmacol 8:191. https://doi.org/10.3389/fphar.2017.00191
Spampanato J, Escayg A, Meisler MH, Goldin AL (2001) Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J Neurosci 21(19):7481–7490. https://doi.org/10.1523/JNEUROSCI.21-19-07481.2001
Spratt PWE, Ben-Shalom R, Keeshen CM, Burke KJ Jr, Clarkson RL, Sanders SJ, Bender KJ (2019) The autism-associated gene Scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron 103(4):673–685. https://doi.org/10.1016/j.neuron.2019.05.037
Steglitz J, Buscemi J, Ferguson MJ (2012) The future of pain research, education, and treatment: a summary of the IOM report “Relieving pain in America: a blueprint for transforming prevention, care, education, and research.” Transl Behav Med 2(1):6–8. https://doi.org/10.1007/s13142-012-0110-2
Sun J, Liu X, Zhao S, Zhang S, Yang L, Zhang J, Zhao M, Xu Y (2022) Prediction and verification of potential lead analgesic and antiarrhythmic components in Corydalis yanhusuo W. T. Wang based on voltage-gated sodium channel proteins. Int J Biol Macromol 216:537–546. https://doi.org/10.1016/j.ijbiomac.2022.07.024
Tan ZY, Mao X, Xiao H, Zhao ZQ, Ji YH (2001) Buthus martensi Karsch agonist of skeletal-muscle RyR-1, a scorpion active polypeptide: antinociceptive effect on rat peripheral nervous system and spinal cord, and inhibition of voltage-gated Na+ currents in dorsal root ganglion neurons. Neurosci Lett 297(2):65–68. https://doi.org/10.1016/s0304-3940(00)01642-6
Tao J, Jiang F, Liu C, Liu Z, Zhu Y, Xu J, Ge Y, Xu K, Yin P (2018) Modulatory effects of bufalin, an active ingredient from toad venom on voltage-gated sodium channels. Mol Biol Rep 45(5):721–740. https://doi.org/10.1007/s11033-018-4213-9
Wang CF, Gerner P, Wang SY, Wang GK (2007) Bulleyaconitine a isolated from aconitum plant displays long-acting local anesthetic properties in vitro and in vivo. Anesthesiology 107(1):82–90. https://doi.org/10.1097/01.anes.0000267502.18605.ad
Wang L, Hao H, Meng X, Zhang W, Zhang Y, Chai T, Wang X, Gao Z, Zheng Y, Yang J (2024a) A novel isoquinoline alkaloid HJ-69 isolated from Zanthoxylum bungeanum attenuates inflammatory pain by inhibiting voltage-gated sodium and potassium channels. J Ethnopharmacol 330:118218. https://doi.org/10.1016/j.jep.2024.118218
Wang D, Liang J, Zhang J, Wang Y, Chai X (2020) Natural chalcones in Chinese materia medica: licorice. Evid Based Complement Alternat Med 2020:3821248. https://doi.org/10.1155/2020/3821248
Wang G, Long C, Liu W, Xu C, Zhang M, Li Q, Lu Q, Meng P, Li D, Rong M, Sun Z, Luo X, Lai R (2018) Novel sodium channel inhibitor from leeches. Front Pharmacol 9:186. https://doi.org/10.3389/fphar.2018.00186
Wang X, Luo H, Peng X, Chen J (2024b) Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 227:116465. https://doi.org/10.1016/j.bcp.2024.116465
Wang X, Zhang B, Li X, Liu X, Wang S, Xie Y, Pi J, Yang Z, Li J, Jia Q, Zhang Y (2021) Mechanisms underlying gastrodin alleviating vincristine-induced peripheral neuropathic pain. Front Pharmacol 12:744663. https://doi.org/10.3389/fphar.2021.744663
Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T, Woods CG, Wood JN, Zufall F (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472(7342):186–190. https://doi.org/10.1038/nature09975
Wood JN, Akopian AN, Baker M, Ding Y, Geoghegan F, Nassar M, Malik-Hall M, Okuse K, Poon L, Ravenall S, Sukumaran M, Souslova V (2002) Sodium channels in primary sensory neurons: relationship to pain states. Novartis Found Symp 241:159–172. https://doi.org/10.1002/0470846682.ch11
Wood JN, Iseppon F (2018) Sodium channels brain. Neurosci Adv 2:1–5. https://doi.org/10.1177/2398212818810684
Wu Q (2023) Structural and pharmacologicalinvestigation of a human voltage-gated sodium channel. Tsinghua University, Beijing. https://doi.org/10.27266/d.cnki.gqhau.2023.000084
Xiao Y, Bingham JP, Zhu W, Moczydlowski E, Liang S, Cummins TR (2008) Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration. J Biol Chem 283(40):27300–27313. https://doi.org/10.1074/jbc.M708447200
Xie W, Strong JA, Ye L, Mao JX, Zhang JM (2013) Knockdown of sodium channel Nav1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia. Pain 154(8):1170–1180. https://doi.org/10.1016/j.pain.2013.02.027
Xie MX, Yang J, Pang RP, Zeng WA, Ouyang HD, Liu YQ, Liu XG (2018) Bulleyaconitine a attenuates hyperexcitability of dorsal root ganglion neurons induced by spared nerve injury: the role of preferably blocking Nav1.7 and Na1.3 channels. Mol Pain 14:1–13. https://doi.org/10.1177/1744806918778491
Xin Y, Tan Y, Xin P, Li H, Zhang S, Tang J, Yu W (2024) Taxonomical clarification of Dracaena cambodiana Pierre ex Gagnep., the source plant of Chinese “Resina Draconis.” Plant Sci J 42(05):572–581. https://doi.org/10.11913/PSJ.2095-0837.23340
Xing Z, Han Q, Feng Z, Xu C, Jia W (2017) Abirritation of geraniol on neuropathic pain model rat and possible mechanism. Chin Pharmacol Bull 33(4):535–541. https://doi.org/10.3969/j.issn.1001-1978.2017.04.017
Xu Y, Li W, Wen R, Sun J, Liu X, Zhao S, Zhang J, Liu Y, Zhao M (2023) Voltage-gated sodium channels, potential targets of Tripterygium wilfordii Hook. f. to exert activity and produce toxicity. J Ethnopharmacol 311:116448. https://doi.org/10.1016/j.jep.2023.116448
Xu Y, Meng X, Hou X, Sun J, Kong X, Sun Y, Liu Z, Ma Y, Niu Y, Song Y, Cui Y, Zhao M, Zhang J (2017) A mutant of the Buthus martensii Karsch antitumor-analgesic peptide exhibits reduced inhibition to hNav1.4 and hNav1.5 channels while retaining analgesic activity. J Biol Chem 292(44):18270–18280. https://doi.org/10.1074/jbc.M117.792697
Xu Y, Sun J, Liu H, Sun J, Yu Y, Su Y, Cui Y, Zhao M, Zhang J (2018) Scorpion toxins targeting voltage-gated sodium channels associated with pain. Curr Pharm Biotechnol 19(11):848–855. https://doi.org/10.2174/1389201019666181105160744
Xu Y, Yu Y, Wang Q, Li W, Zhang S, Liao X, Liu Y, Su Y, Zhao M, Zhang J (2021) Active components of Bupleurum chinense and angelica biserrata showed analgesic effects in formalin induced pain by acting on Nav1.7. J Ethnopharmacol 269:113736. https://doi.org/10.1016/j.jep.2020.113736
Xu J, Zhao W, Pan L, Zhang A, Chen Q, Xu K, Lu H, Chen Y (2016) Peimine, a main active ingredient of Fritillaria, exhibits anti-inflammatory and pain suppression properties at the cellular level. Fitoterapia 111:1–6. https://doi.org/10.1016/j.fitote.2016.03.018
Yan Z, Zhou Q, Wang L, Wu J, Zhao Y, Huang G, Peng W, Shen H, Lei J, Yan N (2017) Structure of the Nav1.4-β1 complex from electric Eel. Cell 170(3):470-482.e11. https://doi.org/10.1016/j.cell.2017.06.039
Yang Y, Ding J, Wang X (2019) Research progress of sodium ion channel disease. J Clin Intern Med 41(1):69–72. https://doi.org/10.3969/j.issn.1001-9057.2024.01.020
Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF (2013) Discovery of a selective Nav1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci USA 110(43):17534–17539. https://doi.org/10.1073/pnas.1306285110
Yang J, Yang Q, Sun S, Feng Y, Zhang J (2023) Research progress of voltage-gated sodium channels in drug discovery for chronic pain. Anhui Med Pharm J 27(1):5–9. https://doi.org/10.3969/j.issn.1009-6469.2023.01.002
Yang J, Yang Q, Zhao J, Sun S, Liu M, Wang Y, Feng Y, Zhang J (2022) Evaluation of Rhodojaponin III from Rhododendron molle G. Don on oral antinociceptive activity, mechanism of action, and subacute toxicity in rodents. J Ethnopharmacol 294:115347. https://doi.org/10.1016/j.jep.2022.115347
Yu G, Qian L, Yu J, Tang M, Wang C, Zhou Y, Geng X, Zhu C, Yang Y, Pan Y, Shen X, Tang Z (2019) Brucine alleviates neuropathic pain in mice via reducing the current of the sodium channel. J Ethnopharmacol 233:56–63. https://doi.org/10.1016/j.jep.2018.12.045
Yuan Y, O’Malley HA, Smaldino MA, Bouza AA, Hull JM, Isom LL (2019) Delayed maturation of GABAergic signaling in the Scn1a and Scn1b mouse models of Dravet Syndrome. Sci Rep 9(1):6210. https://doi.org/10.1038/s41598-019-42191-0
Zayat V, Szlendak R, Hoffman-Zacharska D (2022) Concise review: stem cell models of SCN1A-related encephalopathies-current perspective and future therapies. Cells 11(19):3119. https://doi.org/10.3390/cells11193119
Zeng X, Li P, Chen B, Huang J, Lai R, Liu J, Rong M (2018) Selective closed-state Nav1.7 blocker JZTX-34 exhibits analgesic effects against pain. Toxins (Basel) 10(2):64. https://doi.org/10.3390/toxins10020064
Zhang XL, Cao XY, Lai RC, Xie MX, Zeng WA (2018) Puerarin relieves paclitaxel-induced neuropathic pain: the role of Nav1.8 β1 subunit of sensory neurons. Front Pharmacol 9:1510. https://doi.org/10.3389/fphar.2018.01510
Zhang LL, Qiu J, Hong JR, Xu XQ, Zhang GQ, Li G (2021) Magnolol attenuates inflammatory pain by inhibiting sodium currents in mouse dorsal root ganglion neurons. Inflammopharmacology 29(3):869–877. https://doi.org/10.1007/s10787-021-00809-8
Zhang W, Tang Q, Deng Z, Zhao Y, Zhong Y (2023) Puerarin alleviates radicular pain by inhibiting Nav1.7 upregulation in the dorsal root ganglia. Chin J Pain Med 29(05):332–339. https://doi.org/10.3969/j.issn.1006-9852.2023.05.003
Zhang L, Wang X, Huang X, Wu R, Zhang Y, Shou D (2019) Advance of the chemical components and pharmacological effects of draconis sanguis and resina draconis. Chin J Mod Appl Pharm 36(20):2605–2611. https://doi.org/10.13748/j.cnki.issn1007-7693.2019.20.025
Zhang F, Xu X, Li T, Liu Z (2013) Shellfish toxins targeting voltage-gated sodium channels. Mar Drugs 11(12):4698–4723. https://doi.org/10.3390/md11124698
Zhao M, Wu J, Jin Y, Li M, Yu K, Yu H (2024) Schisandrin B from Schisandra chinensis alleviated pain via glycine receptors, Nav1.7 channels and CaV2.2 channels. J Ethnopharmacol 326:117996. https://doi.org/10.1016/j.jep.2024.117996
Zhao Q, Zhang X, Long S, Wang S, Yu H, Zhou Y, Li Y, Xue L, Hu Y, Yin S (2023b) Licochalcone mediates the pain relief by targeting the voltage-gated sodium channel. Mol Pharmacol 104(4):133–143. https://doi.org/10.1124/molpharm.122.000658
Zhao C, Zhou X, Shi X (2023a) The influence of Nav1.9 channels on intestinal hyperpathia and dysmotility. Channels (Austin) 17(1):2212350. https://doi.org/10.1080/19336950.2023.2212350
Zheng YM, Wang WF, Li YF, Yu Y, Gao ZB (2018) Enhancing inactivation rather than reducing activation of Nav1.7 channels by a clinically effective analgesic CNV1014802. Acta Pharmacol Sin 39(4):587–596. https://doi.org/10.1038/aps.2017.151
Zou X, He Y, Qiao J, Zhang C, Cao Z (2016) The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells. Toxicon 109:33–41. https://doi.org/10.1016/j.toxicon.2015.11.005
Zou L, Wang X, Qian W, Xu Z (2019) Research progress in voltage-gated sodium channel subtypes and related diseases. Northwest Pharm J 34(05):705–708. https://doi.org/10.3969/j.issn.1004-2407.2019.05.031
Acknowledgements
The authors thank Cancer Research UK for support., thank the Sichuan Province science and technology Department Sichuan Province science and technology plan project (No. 2024NSFSC0712, No. 2021YJ0251), the Science and technology project of Sichuan Provincial Health Commission (No. 24QNMP011), Science and technology research project of Sichuan Administration of Traditional Chinese Medicine (No. 2023MS600), Chengdu University of Traditional Chinese Medicine Xinglin scholars Qingji talent project (No. QJRC2022027) and the fellowship from China Scholarship Council (No. 202308510149) for their financial support. The authors also thank thesupport of the experimental equipments from the State Key Laboratory of CDUTCM and Wolfson Institute for Biomedical Research of UCL.
Author information
Authors and Affiliations
Contributions
Zhen Zhang & John N. Wood conceived the work. Zhen Zhang: Writing – review & editing, Writing – original draft, Project administration & Funding acquisition. Fuyu Xie: Writing – review & editing, Software, Formal analysis. Yue Zhang: Writing – review & editing, Data curation, Validation. Mengxia Wu: Investigation & Validation. John N. Wood: Writing – review & editing, Project administration & Funding acquisition. Ahmed.M.M. Mahmoud: Review & editing.
Corresponding authors
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Z., Xie, FY., Zhang, Y. et al. Traditional Chinese medicine and natural small molecules for pain treatment via voltage-gated sodium channels: a review. Phytochem Rev (2025). https://doi.org/10.1007/s11101-025-10151-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11101-025-10151-4