Skip to main content

Advertisement

Log in

Chemotherapy-Related Neurotoxicity

  • Neuro-Oncology (LE Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Chemotherapy may have detrimental effects on either the central or peripheral nervous system. Central nervous system neurotoxicity resulting from chemotherapy manifests as a wide range of clinical syndromes including acute, subacute, and chronic encephalopathies, posterior reversible encephalopathy, acute cerebellar dysfunction, chronic cognitive impairment, myelopathy, meningitis, and neurovascular syndromes. These clinical entities vary by causative agent, degree of severity, evolution, and timing of occurrence. In the peripheral nervous system, chemotherapy-induced peripheral neuropathy (CIPN) and myopathy are the two main complications of chemotherapy. CIPN is the most common complication, and the majority manifest as a dose-dependent length-dependent sensory axonopathy. In severe cases of CIPN, the dose of chemotherapy is reduced, the administration delayed, or the treatment discontinued. Few treatments are available for CIPN and based on meta-analysis, duloxetine is the preferred symptomatic treatment. Myopathy due to corticosteroid use is the most frequent cause of muscle disorders in patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ganz PA, Dougherty PM. Painful hands and feet after cancer treatment: inflammation affecting the mind-body connection. J Clin Oncol. 2016;34:649–52. An updated expert opinion on recent advances regarding chemotherapy –related neurotoxicity, underscoring the important role of inflammation in cognitive dysfunction, and peripheral neuropathy, both linked to neuroinflammation as well as genetic susceptibility to persistent inflammation and behavioral symptoms. The authors also highlight that the symptoms of chemotherapy neurotoxicity can now be measured with a wide variety of well-validated self-report tools i.e. patient-reported outcomes.

    Article  CAS  PubMed  Google Scholar 

  2. Nudelman KN, McDonald BC, Wang Y, et al. Cerebral perfusion and gray matter changes associated with chemotherapy-induced peripheral neuropathy. J Clin Oncol. 2016;34:677–83. Longitudinal relationship between chemotherapy-induced peripheral neuropathy (CIPN) symptoms and brain perfusion changes in patients with breast cancer. CIPN symptoms were positively associated with cerebral perfusion in the right superior frontal gyrus and cingulate gyrus, regions associated with pain processing.

    Article  CAS  PubMed  Google Scholar 

  3. Magge RS, DeAngelis LM. The double-edged sword: neurotoxicity of chemotherapy. Blood Rev. 2015;29:93–100.

    Article  CAS  PubMed  Google Scholar 

  4. Chamberlain MC. Neurotoxicity of cancer treatment. Curr Oncol Rep. 2010;12:60–7.

    Article  PubMed  Google Scholar 

  5. Hansen N. Drug-induced encephalopathy. In: Tanasescu R, editor. Miscellanea on encephalopathies—a second look. InTech, 2012. pp. 39–60.

  6. DeAngelis LM, Posner JB. Side effects of chemotherapy. In: Neurologic complications of cancer, 2nd. New York, Oxford University Press; 2009. p. 447.

  7. David KA, Picus J. Evaluating risk factors for the development of ifosfamide encephalopathy. Am J Clin Oncol. 2005;28:277–80.

    Article  CAS  PubMed  Google Scholar 

  8. Hansen H. Aprepitant-associated ifosfamide neurotoxicity. J Oncol Pharm Pract. 2010;16:137–8.

    Article  Google Scholar 

  9. Ames B, Lewis LD, Chaffee S, et al. Ifosfamide-induced encephalopathy and movement disorder. Pediatr Blood Cancer. 2010;54:624–6.

    PubMed  Google Scholar 

  10. Savica R, Rabinstein AA, Josephs KA. Ifosfamide associated myoclonus-encephalopathy syndrome. J Neurol. 2011;258:1729–31.

    Article  CAS  PubMed  Google Scholar 

  11. Nott L, Price TJ, Pittman K, et al. Hyperammonemia encephalopathy: an important cause of neurological deterioration following chemotherapy. Leuk Lymphoma. 2007;48:1702–11.

    Article  CAS  PubMed  Google Scholar 

  12. Bhojwani D, Sabin ND, Pei D, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014;32:949–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374(9701):1639–51.

    Article  CAS  PubMed  Google Scholar 

  14. Wefel JS, Saleeba AK, Buzdar AU, et al. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer. 2010;116:3348–56.

    Article  PubMed  Google Scholar 

  15. Ahles TA, Saykin AJ, McDonald BC, et al. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol. 2010;28:4434–40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jim HS, Phillips KM, Chait S, et al. Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol. 2012;30:3578–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore HCF. An overview of chemotherapy-related cognitive dysfunction, or ‘chemobrain’. Oncology (Williston Park). 2014;28:797–804.

    Google Scholar 

  18. Ganz PA. Cancer treatment and cognitive function: chemotherapy is not the only culprit. Oncology (Williston Park). 2014;28(9):804–6.

    Google Scholar 

  19. Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol. 2012;30:3675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vardy JL, Dhillon HM, Pond GR, et al. Cognitive function in patients with colorectal cancer who do and do not receive chemotherapy: a prospective, longitudinal, controlled study. J Clin Oncol. 2015;33:4085–93.

    Article  CAS  PubMed  Google Scholar 

  21. Ahles TA, Saykin AJ, Noll WW, et al. The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psychooncology. 2003;12:612–9.

    Article  PubMed  Google Scholar 

  22. McDonald BC, Conroy SK, Smith DJ, et al. Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain Behav Immun. 2013;30(Suppl):S117–25.

    Article  PubMed  Google Scholar 

  23. Small BJ, Rawson KS, Walsh E, et al. Catechol-O-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breast cancer survivors. Cancer. 2011;117:1369–76.

    Article  CAS  PubMed  Google Scholar 

  24. Bower JE, Ganz PA, Irwin MR, et al. Cytokine genetic variations and fatigue among patients with breast cancer. J Clin Oncol. 2013;31:1656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kesler S, Janelsins M, Koovakkattu D, et al. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun. 2013;30(Suppl):S109–16.

    Article  CAS  PubMed  Google Scholar 

  26. Ganz PA, Bower JE, Kwan L, et al. Does tumor necrosis factor-alpha (TNFalpha) play a role in post-chemotherapy cerebral dysfunction? Brain Behav Immun. 2013;30:S99–108. An exploration of possible mechanisms associated with post-treatment cognitive dysfunction among breast cancer survivors. Cognitive complaints, neuropsychological (NP) test performance, markers of inflammation, and brain imaging were performed. Onlyserum TNF levels was significantly correlated with increased memory complaints and with relatively diminished brain metabolism in the inferior frontal cortex.

    Article  CAS  PubMed  Google Scholar 

  27. Deprez S, Amant F, Smeets A, et al. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol. 2012;30:274–81.

    Article  PubMed  Google Scholar 

  28. Deprez S, Vandenbulcke M, Peeters R, et al. Longitudinal assessment of chemotherapy-induced alterations in brain activations during multitasking and its relation with cognitive complaints. J Clin Oncol. 2014;32:20131–8. Evidence for a relationship between longitudinal changes in cognitive complaints and changes in brain activation after chemotherapy.

    Article  Google Scholar 

  29. de Ruiter MB, Reneman L, Boogerd W, et al. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Hum Brain Mapp. 2012;33:2971–83.

    Article  PubMed  Google Scholar 

  30. de Ruiter MB, Reneman L, Boogerd W, et al. Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum Brain Mapp. 2011;32:1206–19.

    Article  PubMed  Google Scholar 

  31. McDonald BC, Conroy SK, Ahles TA, et al. Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res Treat. 2010;123:819–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ercoli LM, Castellon SA, Hunter AM, et al. Assessment of the feasibility of a rehabilitation intervention program for breast cancer survivors with cognitive complaints. Brain Imaging Behav. 2013;7:543–53.

    Article  PubMed  Google Scholar 

  33. Ercoli LM, Castellon S, Petersen L, et al. Cognitive rehabilitation group intervention for breast cancer survivors: results of a randomized clinical trial. International Cancer and Cognition Task Force Meeting; Seattle, WA 2014.

  34. Schuurs A, Green HJ. A feasibility study of group cognitive rehabilitation for cancer survivors: enhancing cognitive function and quality of life. Psycho-Oncology. 2013;22:1043–9.

    Article  PubMed  Google Scholar 

  35. Cherrier MM, Anderson K, David D, et al. A randomized trial of cognitive rehabilitation in cancer survivors. Life Sci. 2013;93:617–22.

    Article  CAS  PubMed  Google Scholar 

  36. Hunter AM, Kwan L, Ercoli LM, et al. Quantitative electroencephalography biomarkers of cognitive complaints after adjuvant therapy in breast cancer survivors: a pilot study. Psycho-Oncology. 2014;23:713–5.

    Article  PubMed  Google Scholar 

  37. Moore HF, Parsons M, Yue G, et al. Electroencephalogram power changes as a correlate of chemotherapy-associated fatigue and cognitive dysfunction. Support Care Cancer. 2014;22:2127–31.

    Article  PubMed  Google Scholar 

  38. Herzig RH, Hines, Herzig GP, et al. Cerebellar toxicity with high-dose cytosine arabinoside. J Clin Oncol. 1987;5:927–32.

    CAS  PubMed  Google Scholar 

  39. Chamberlain MC. Neurotoxicity of intra-CSF liposomal cytarabine (DepoCyt) administered for the treatment of leptomeningeal metastases: a retrospective case series. J Neurooncol. 2012;109:143–8.

    Article  CAS  PubMed  Google Scholar 

  40. Chamberlain MC, Glantz MJ. Re: neurologic complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high-dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood. 2007;110:1698–9.

    Article  CAS  PubMed  Google Scholar 

  41. Chamberlain MC, Kormanik PA, Barba D. Complications associated with intraventricular chemotherapy in patients with leptomeningeal metastases. J Neurosurg. 1997;87:694–9.

    Article  CAS  PubMed  Google Scholar 

  42. Zairi F, Le Rhun E, Bertrand N, Boulanger T, Taillibert S, Aboukais R, et al. Complications related to the use of an intraventricular access device for the treatment of leptomeningeal metastases from solid tumor: a single centre experience in 112 patients. J Neurooncol. 2015;124(2):317–23.

    Article  PubMed  Google Scholar 

  43. Pruitt AA. Nervous system infections in patients with cancer. Neurol Clin N Am. 2003;21:193–219.

    Article  Google Scholar 

  44. Rosenfeld MS, Pruitt A. Neurologic complications of bone marrow, stem cell, and organ transplantation in patients with cancer. Semin Oncol. 2006;33:352–61.

    Article  PubMed  Google Scholar 

  45. Li SH, Chen WH, Tang Y, Rau KM, Chen YY, Huang TL, et al. Incidence of ischemic stroke post-chemotherapy: a retrospective review of 10,963 patients. Clin Neurol Neurosurg. 2006;108(2):150–6.

    Article  PubMed  Google Scholar 

  46. Hunault-Berger M, Chevallier P, Delain M, et al. Changes in antithrombin and fi brinogen levels during induction chemotherapy with l-asparaginase in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Use of supportive coagulation therapy and clinical outcome: the capelal study. Haematologica. 2008;93:1488–94.

    Article  CAS  PubMed  Google Scholar 

  47. Carreras E, Cahn JY, Puozzo C, et al. Influence on Busilvex pharmacokinetics of clonazepam compared to previous phenytoin historical data. Anticancer Res. 2010;30:2977–84.

    CAS  PubMed  Google Scholar 

  48. Masci G, Magagnoli M, Gullo G, et al. Herpes infections in breast cancer patients treated with adjuvant chemotherapy. Oncology. 2006;71:164–7.

    Article  CAS  PubMed  Google Scholar 

  49. Teh HS, Fadilah SAW, Leong CF. Transverse myelopathy following intrathecal administration of chemotherapy. Singap Med. 2007;48:e46–9.

    CAS  Google Scholar 

  50. Shintaku M, Toyooka N, Koyama T, Teraoka S, Tsudo M. Methotrexate myelopathy with extensive transverse necrosis: report of an autopsy case. Neuropathol Off J Jpn Soc Neuropathol. 2014;34:547–53.

    Article  CAS  Google Scholar 

  51. Cachia D, Kamiya-Matsuoka C, Pinnix CC, et al. Myelopathy following intrathecal chemotherapy in adults: a single institution experience. J Neurooncol. 2015;122:391–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Graber JJ, Nolan CP. Myelopathies in patients with cancer. Arch Neurol. 2010;67:298–304.

    Article  PubMed  Google Scholar 

  53. Ackermann R, Semmler A, Maurer GD, et al. Methotrexate-induced myelopathy responsive to substitution of multiple folate metabolites. J Neurooncol. 2010;97:425–7.

    Article  CAS  PubMed  Google Scholar 

  54. Tisi MC, Ausoni G, Vita MG, et al. Clinical reversible myelopathy in T-cell lymphoblastic lymphoma treated with nelarabine and radiotherapy: report of a case and review of literature of an increasing complication. Mediterr J Hematol Infect Dis. 2015;7:e2015025.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gollard RP, Selco S. Irreversible myelopathy associated with nelarabine in T-cell acute lymphoblastic leukemia. J Clin Oncol. 2013;31:327–31.

    Article  CAS  Google Scholar 

  56. Vagace JM, Caceres-Marzal C, Jimenez M, et al. Methotrexate-induced subacute neurotoxicity in a child with acute lymphoblastic leukemia carrying genetic polymorphisms related to folate homeostasis. Am J Hematol. 2011;86:98–101.

    Article  CAS  PubMed  Google Scholar 

  57. Afshar M, Birnbaum D, Golden C. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity. Pediatr Neurol. 2014;50:625–9.

    Article  PubMed  Google Scholar 

  58. Küpfer A, Aeschlimann C, Cerny T. Methylene blue and the neurotoxic mechanisms of ifosfamide encephalopathy. Eur J Clin Pharmacol. 1996;50(4):249–52.

    Article  PubMed  Google Scholar 

  59. Takimoto CH, Lu ZH, Zhang R, et al. Severe neurotoxicity following 5-fluorouracil-based chemotherapy in a patient with dihydropyrimidine dehydrogenase deficiency. Clin Cancer Res. 1996;2:477–81.

    CAS  PubMed  Google Scholar 

  60. Fugate JE, Claassen DO, Cloft HJ, et al. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc. 2010;85:427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kastrup O, Gerwig M, Frings M, Diener HC. Posterior reversible encephalopathy syndrome (PRES): electroencephalographic findings and seizure patterns. J Neurol. 2012;259:1383–9.

    Article  PubMed  Google Scholar 

  62. Covarrubias DJ, Luetmer PH, Campeau NG. Posterior reversible encephalopathy syndrome: prognostic utility of quantitative diffusion-weighted MR images. AJNR Am J Neuroradiol. 2002;23:1038–48.

    PubMed  Google Scholar 

  63. Garcia G, Atallah JP Antineoplastic agents and thrombotic microangiopathy. J Oncol Pharm Pract. 2016.

  64. Park SB, Goldstein D, Krishnan AV, et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin. 2013;63:419–37.

    Article  PubMed  Google Scholar 

  65. Rivera E, Cianfrocca M. Overview of neuropathy associated with taxanes for the treatment of metastatic breast cancer. Cancer Chemother Pharmacol. 2015;75:659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eckhoff L, Knoop AS, Jensen M-B, Ejlertsen B, Ewertz M. Risk of docetaxel-induced peripheral neuropathy among 1,725 Danish patients with early stage breast cancer. Breast Cancer Res Treat. 2013;142:109–18.

    Article  CAS  PubMed  Google Scholar 

  67. Brewer JR, Morrison G, Dolan ME, Fleming GF. Chemotherapy-induced peripheral neuropathy: current status and progress. Gynecol Oncol. 2015. doi:10.1016/j.ygyno.2015.11.011. published online Nov 7.

    PubMed  Google Scholar 

  68. Beijers AJM, Jongen JLM, Vreugdenhil G. Chemotherapy-induced neurotoxicity: the value of neuroprotective strategies. Neth J Med. 2012;70:18–25.

    CAS  PubMed  Google Scholar 

  69. Bhatnagar B, Gilmore S, Goloubeva O, et al. Chemotherapy dose reduction due to chemotherapy induced peripheral neuropathy in breast cancer patients receiving chemotherapy in the neoadjuvant or adjuvant settings: a single-center experience. Springerplus. 2014;3:366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol. 2012;14(4):iv45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Osmani K, Vignes S, Aissi M, et al. Taxane-induced peripheral neuropathy has good long-term prognosis: a 1- to 13-year evaluation. J Neurol. 2012;259:1936–43.

    Article  PubMed  Google Scholar 

  72. Bahl A, Oudard S, Tombal B, et al. Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate cancer treated in the TROPIC trial. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2013;24:2402–8.

    Article  CAS  Google Scholar 

  73. LaPointe NE, Morfini G, Brady ST, Feinstein SC, Wilson L, Jordan MA. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology. 2013;37:231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Avan A, Postma TJ, Ceresa C, et al. Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist. 2015;20:411–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat Rev. 2008;34(4):368–77. doi:10.1016/j.ctrv.2008.01.003.

    Article  CAS  PubMed  Google Scholar 

  76. Kropff M, Giongco-Baylon H, Hillengass J, et al. Thalidomide versus dexamethasone for the treatment of relapsed and/or refractory multiple myeloma: results from OPTIMUM, a randomized trial. Haematologica. 2012;97:784–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mileshkin L, Stark R, Day B, et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol. 2006;24:4507–14.

    Article  CAS  PubMed  Google Scholar 

  78. Feyler S, Rawstron A, Jackson G, Snowden JA, Cocks K, Johnson RJ. Thalidomide maintenance following high-dose therapy in multiple myeloma: a UK myeloma forum phase 2 study. Br J Haematol. 2007;139:429–33.

    Article  CAS  PubMed  Google Scholar 

  79. Tosi P, Zamagni E, Cellini C, et al. Neurological toxicity of long-term(>1 yr) thalidomide therapy in patients with multiple myeloma. Eur J Haematol. 2005;74:212–6.

    Article  CAS  PubMed  Google Scholar 

  80. Giannini F, Volpi N, Rossi S, et al. Thalidomide-induced neuropathy: a ganglionopathy? Neurology. 2003;60:877–8.

    Article  CAS  PubMed  Google Scholar 

  81. Kirchmair R, Tietz AB, Panagiotou E, et al. Therapeutic angiogenesis inhibits or rescues chemotherapy-induced peripheral neuropathy: taxol- and thalidomide induced injury of vasa nervorum is ameliorated by VEGF. Mol Ther. 2007;15:69–75.

    Article  CAS  PubMed  Google Scholar 

  82. Isoardo G, Bergui M, Durelli L, et al. Thalidomide neuropathy: clinical, electrophysiological and neuoradiological features. Acta Neurol Scand. 2004;109:188–93.

    Article  CAS  PubMed  Google Scholar 

  83. Gay F, Hayman SR, Lacy MQ, et al. Lenalidomide plus dexamethasone versus thalidomide plus dexamethasone in newly diagnosed multiple myeloma. Blood. 2010;115:1343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barlogie B, Tricot G, Anaissie E, et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med. 2006;354:1021–30.

    Article  CAS  PubMed  Google Scholar 

  85. Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev. 2014;40:872–82.

    Article  CAS  PubMed  Google Scholar 

  86. Peng L, Bu Z, Ye X, Zhou Y, Zhao Q. Incidence and risk of peripheral neuropathy with nab-paclitaxel in patients with cancer: a meta-analysis. Eur J Cancer Care (Engl). 2015. doi:10.1111/ecc.12407. published online Nov 4.

    Google Scholar 

  87. Chaudhry V, Eisenberger MA, Sinibaldi VJ, Sheikh K, Griffin JW, Cornblath DR. A prospective study of suramin-induced peripheral neuropathy. Brain. 1996;119(Pt 6):2039–52.

    Article  PubMed  Google Scholar 

  88. Gill JS, Windebank AJ. Suramin induced ceramide accumulation leads to apoptotic cell death in dorsal root ganglion neurons. Cell Death Differ. 1998;5(10):876–83.

    Article  CAS  PubMed  Google Scholar 

  89. Hershman DL, Lacchetti C, Dworkin RH, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2014;32:1941–67. Evidence-based guidance on the optimum prevention and treatment approaches in the management of CIPN in adult cancer survivors.

    Article  CAS  PubMed  Google Scholar 

  90. Pace A, Giannarelli D, Galiè E, et al. Vitamin E neuroprotection for cisplatin neuropathy: a randomized, placebo-controlled trial. Neurology. 2010;74:762–6.

    Article  CAS  PubMed  Google Scholar 

  91. Mols F, Beijers AJM, Vreugdenhil G, Verhulst A, Schep G, Husson O. Chemotherapy-induced peripheral neuropathy, physical activity and health-related quality of life among colorectal cancer survivors from the PROFILES registry. J Cancer Surviv Res Pract. 2015;9:512–22.

    Article  Google Scholar 

  92. Smith EML, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA. 2013;309:1359–67. A randomized, double-blind, placebo-controlled crossover trial demonstrating effectiveness of duloxetine in the treatment of CIPN-related pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rao RD, Michalak JC, Sloan JA, et al. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer. 2007;110:2110–8.

    Article  CAS  PubMed  Google Scholar 

  94. Gallagher HC, Gallagher RM, Butler M, Buggy DJ, Henman MC. Venlafaxine for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;8, CD011091.

    PubMed  Google Scholar 

  95. Saarto T, Wiffen PJ. Antidepressants for neuropathic pain. Cochrane Database Syst Rev. 2007;4, CD005454.

    PubMed  Google Scholar 

  96. Thompson DF, Brooks KG. Systematic review of topical amitriptyline for the treatment of neuropathic pain. J Clin Pharm Ther. 2015. doi:10.1111/jcpt.12297. published online June 7.

    Google Scholar 

  97. Hearn L, Derry S, Phillips T, Moore RA, Wiffen PJ. Imipramine for neuropathic pain in adults. Cochrane Database Syst Rev. 2014;5, CD010769.

    PubMed  Google Scholar 

  98. Papapetrou P, Kumar AJ, Muppuri R, Chakrabortty S. Intravenous lidocaine infusion to treat chemotherapy-induced peripheral neuropathy. Case Rep. 2015;5:154–5.

    Google Scholar 

  99. Marineo G, Iorno V, Gandini C, Moschini V, Smith TJ. Scrambler therapy may relieve chronic neuropathic pain moreeffectively than guideline-based drug management: results of a pilot, randomized, controlled trial. J Pain Symptom Manag. 2012;43:87–95.

    Article  Google Scholar 

  100. Xu WR, Hua BJ, Hou W, Bao YJ. Clinical randomized controlled study on acupuncture for treatment of peripheral neuropathy induced by chemotherapeutic drugs. Zhongguo Zhen Jiu. 2010;30:457–60.

    PubMed  Google Scholar 

  101. Schroeder S, Meyer-Hamme G, Epplee S. Acupuncture for chemotherapy-induced peripheral neuropathy (CIPN): a pilot study using neurography. Acupunct Med. 2012;30:4–7.

    Article  PubMed  Google Scholar 

  102. Abd-Elsayed A, Schiavoni N, Sachdeva H. Efficacy of spinal cord stimulators in treating peripheral neuropathy: a case series. J Clin Anesth. 2015. doi:10.1016/j.jclinane.2015.08.011. published online Sept 19.

    Google Scholar 

  103. Saini R, Chandragouda D, Talwar V, Rajpurohit S. Grade IV myositis: a rare complication of docetaxel. J Cancer Res Ther. 2015;11:664.

    Article  PubMed  Google Scholar 

  104. Orsucci D, Pizzanelli C, Alì G, et al. Nerve, muscle and heart acute toxicity following oxaliplatin and capecitabine treatment. Neuromuscul Disord NMD. 2012;22:767–70.

    Article  PubMed  Google Scholar 

  105. Pentsova E, Liu A, Rosenblum M, O’Reilly E, Chen X, Hormigo A. Gemcitabine induced myositis in patients with pancreatic cancer: case reports and topic review. J Neurooncol. 2012;106:15–21.

    Article  PubMed  Google Scholar 

  106. Bradley WG, Lassman LP, Pearce GW, Walton JN. The neuromyopathy of vincristine in man. Clinical, electrophysiological and pathological studies. J Neurol Sci. 1970;10(2):107–31.

    Article  CAS  PubMed  Google Scholar 

  107. Truica CI, Frankel SR. Acute rhabdomyolysis as a complication of cytarabine chemotherapy for acute myeloid leukemia: case report and review of literature. Am J Hematol. 2002;70:320–3.

    Article  PubMed  Google Scholar 

  108. Lintermans A, Van Calster B, Van Hoydonck M, et al. Aromatase inhibitor-induced loss of grip strength is body mass index dependent: hypothesis-generating findings for its pathogenesis. Ann Oncol. 2011;22(8):1763–9.

    Article  CAS  PubMed  Google Scholar 

  109. Irwin ML, Cartmel B, Gross CP, et al. Randomized exercise trial of aromatase inhibitor-induced arthralgia in breast cancer survivors. J Clin Oncol. 2015;33(10):1104–11.

    Article  PubMed  Google Scholar 

  110. Batchelor TT, Taylor LP, Thaler HT, Posner JB, DeAngelis LM. Steroid myopathy in cancer patients. Neurology. 1997;48:1234–8.

    Article  CAS  PubMed  Google Scholar 

  111. Roth P, Wick W, Weller M. Steroids in neurooncology: actions, indications, side-effects. Curr Opin Neurol. 2010;23:597–602.

    Article  CAS  PubMed  Google Scholar 

  112. van Balkom RH, van der Heijden HF, van Herwaarden CL, Dekhuijzen PN. Corticosteroid-induced myopathy of the respiratory muscles. Neth J Med. 1994;45:114–22.

    PubMed  Google Scholar 

  113. Da Silva JA, Jacobs JWG, Kirwan JR, et al. Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data. Ann Rheum Dis. 2006;65:285–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Chamberlain.

Ethics declarations

Conflict of Interest

Marc C. Chamberlain declares that he has no conflict of interest.

Sophie Taillibert has received personal fees from Roche-France and Mundipharma-EDO.

Emilie Le Rhun has received grants (paid to her institution) from Mundipharma and Amgen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Sophie Taillibert and Emilie Le Rhun are co-first authors

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taillibert, S., Le Rhun, E. & Chamberlain, M.C. Chemotherapy-Related Neurotoxicity. Curr Neurol Neurosci Rep 16, 81 (2016). https://doi.org/10.1007/s11910-016-0686-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0686-x

Keywords