Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Anti-cancer activity of human gastrointestinal bacteria

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

This article was retracted on 21 April 2025

This article has been updated

Abstract

Malignant neoplasm is one of the most incurable diseases among inflammatory diseases. Researchers have been studying for decades to win over this lethal disease and provide the light of hope to humankind. The gastrointestinal bacteria of human hold a complex ecosystem and maintain homeostasis. One hundred trillion microbes are residing in the gastrointestinal tract of human. Disturbances in the microbiota of human’s gastrointestinal tract can create immune response against inflammation and also can develop diseases, including cancer. The bacteria of the gastrointestinal tract of human can secrete a variety of metabolites and bioproducts which aid in the preservation of homeostasis in the host and gut. During pathogenic dysbiosis, on the other hand, numerous microbiota subpopulations may increase and create excessive levels of toxins, which can cause inflammation and cancer. Furthermore, the immune system of host and the epithelium cell can be influenced by gut microbiota. Probiotics, which are bacteria that live in the gut, have been protected against tumor formation. Probiotics are now studied to see if they can help fight dysbiosis in cancer patients undergoing chemotherapy or radiotherapy because of their capacity to maintain gut homeostasis. Countless numbers of gut bacteria have demonstrated anti-cancer efficiency in cancer treatment, prevention, and boosting the efficiency of immunotherapy. The review article has briefly explained the anti-cancer immunity of gut microbes and their application in treating a variety of cancer. This review paper also highlights the pre-clinical studies of probiotics against cancer and the completed and ongoing clinical trials on cancers with the two most common and highly effective probiotics Lactobacillus and Bacillus spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Change history

References

  1. S Roy G Trinchieri 2017 Microbiota: a key orchestrator of cancer therapy Nat Rev Cancer 17 5 271 285 https://doi.org/10.1038/nrc.2017.13

    Article  CAS  PubMed  Google Scholar 

  2. S Gori A Inno L Belluomini P Bocus Z Bisoffi A Russo G Arcaro 2019 Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy Crit Rev Oncol Hematol 143 139 147 https://doi.org/10.1016/j.critrevonc.2019.09.003

    Article  PubMed  Google Scholar 

  3. MM AlHilli V Bae-Jump 2020 Diet and gut microbiome interactions in gynecologic cancer Gynecol Oncol 159 2 299 308 https://doi.org/10.1016/j.ygyno.2020.08.027

    Article  CAS  PubMed  Google Scholar 

  4. JM Rodríguez K Murphy C Stanton RP Ross OI Kober N Juge E Avershina K Rudi A Narbad MC Jenmalm JR Marchesi MC Collado 2015 The composition of the gut microbiota throughout life, with an emphasis on early life Microb Ecol Health Dis 26 26050 https://doi.org/10.3402/mehd.v26.26050

    Article  PubMed  Google Scholar 

  5. DN Frank AL St Amand RA Feldman EC Boedeker N Harpaz NR Pace 2007 Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases Proc Natl Acad Sci USA 104 34 13780 13785 https://doi.org/10.1073/pnas.0706625104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L Wen RE Ley PY Volchkov PB Stranges L Avanesyan AC Stonebraker C Hu FS Wong GL Szot JA Bluestone JI Gordon AV Chervonsky 2008 Innate immunity and intestinal microbiota in the development of type 1 diabetes Nature 455 7216 1109 1113 https://doi.org/10.1038/nature07336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. RE Ley PJ Turnbaugh S Klein JI Gordon 2006 Microbial ecology: human gut microbes associated with obesity Nature 444 7122 1022 1023 https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  8. EY Hsiao SW McBride S Hsien G Sharon ER Hyde T McCue JA Codelli J Chow SE Reisman JF Petrosino PH Patterson SK Mazmanian 2013 Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders Cell 155 7 1451 1463 https://doi.org/10.1016/j.cell.2013.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M Valles-Colomer G Falony Y Darzi EF Tigchelaar J Wang RY Tito C Schiweck A Kurilshikov M Joossens C Wijmenga S Claes L Oudenhove Van A Zhernakova S Vieira-Silva J Raes 2019 The neuroactive potential of the human gut microbiota in quality of life and depression Nat Microbiol 4 4 623 632 https://doi.org/10.1038/s41564-018-0337-x

    Article  CAS  PubMed  Google Scholar 

  10. AD Kostic D Gevers CS Pedamallu M Michaud F Duke AM Earl AI Ojesina J Jung AJ Bass J Tabernero J Baselga C Liu RA Shivdasani S Ogino BW Birren C Huttenhower WS Garrett M Meyerson 2012 Genomic analysis identifies association of fusobacterium with colorectal carcinoma Genome Res 22 2 292 298 https://doi.org/10.1101/gr.126573.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E Allen-Vercoe C Jobin 2014 Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol Lett https://doi.org/10.1016/j.imlet.2014.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  12. M Levy CA Thaiss E Elinav 2016 Metabolites: messengers between the microbiota and the immune system Genes Dev 30 14 1589 1597 https://doi.org/10.1101/gad.284091.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. JR White P Dauros-Singorenko J Hong F Vanholsbeeck A Phillips S Swift 2020 The role of host molecules in communication with the resident and pathogenic microbiota: a review Med Microecol 4 100005 100005 https://doi.org/10.1016/j.medmic.2020.100005

    Article  Google Scholar 

  14. G Kroemer L Zitvogel 2018 Cancer immunotherapy in 2017: the breakthrough of the microbiota Nat Rev Immunol 18 2 87 88 https://doi.org/10.1038/nri.2018.4

    Article  CAS  PubMed  Google Scholar 

  15. N Geva-Zatorsky E Sefik L Kua L Pasman TG Tan A Ortiz-Lopez TB Yanortsang L Yang R Jupp D Mathis C Benoist DL Kasper 2017 Mining the human gut microbiota for immunomodulatory organisms Cell 168 5 928 943.e11 https://doi.org/10.1016/j.cell.2017.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. AL Haber M Biton N Rogel RH Herbst K Shekhar C Smillie G Burgin TM Delorey MR Howitt Y Katz I Tirosh S Beyaz D Dionne M Zhang R Raychowdhury WS Garrett O Rozenblatt-Rosen HN Shi O Yilmaz RJ Xavier A Regev 2017 A single-cell survey of the small intestinal epithelium Nature 551 7680 333 339 https://doi.org/10.1038/nature24489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D Rothschild O Weissbrod E Barkan A Kurilshikov T Korem D Zeevi PI Costea A Godneva IN Kalka N Bar S Shilo D Lador AV Vila N Zmora M Pevsner-Fischer D Israeli N Kosower G Malka BC Wolf T Avnit-Sagi M Lotan-Pompan A Weinberger Z Halpern S Carmi J Fu C Wijmenga A Zhernakova E Elinav E Segal 2018 Environment dominates over host genetics in shaping human gut microbiota Nature 555 7695 210 215 https://doi.org/10.1038/nature25973

    Article  CAS  PubMed  Google Scholar 

  18. T Korem D Zeevi J Suez A Weinberger T Avnit-Sagi M Pompan-Lotan E Matot G Jona A Harmelin N Cohen A Sirota-Madi CA Thaiss M Pevsner-Fischer R Sorek RJ Xavier E Elinav E Segal 2015 Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples Science 349 6252 1101 1106 https://doi.org/10.1126/science.aac4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. V Gopalakrishnan BA Helmink CN Spencer A Reuben JA Wargo 2018 The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy Cancer Cell 33 4 570 580 https://doi.org/10.1016/j.ccell.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. B Goodman H Gardner 2018 The microbiome and cancer: the microbiome and cancer J Pathol 244 5 667 676 https://doi.org/10.1002/path.5047

    Article  PubMed  Google Scholar 

  21. R Knight C Callewaert C Marotz ER Hyde JW Debelius D McDonald ML Sogin 2017 The microbiome and human biology Annu Rev Genomics Hum Genet 18 1 65 86 https://doi.org/10.1146/annurev-genom-083115-022438

    Article  CAS  PubMed  Google Scholar 

  22. LE Fulbright M Ellermann JC Arthur 2017 The Microbiome and the hallmarks of cancer PLoS Pathog 13 9 e1006480 https://doi.org/10.1371/journal.ppat.1006480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A Gagnaire B Nadel D Raoult J Neefjes J-P Gorvel 2017 Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer Nat Rev Microbiol 15 2 109 128 https://doi.org/10.1038/nrmicro.2016.171

    Article  CAS  PubMed  Google Scholar 

  24. M Carabotti A Scirocco MA Maselli C Severi 2015 The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems Ann Gastroenterol 28 2 203 209

    PubMed  PubMed Central  Google Scholar 

  25. P Rossi R Difrancia V Quagliariello E Savino P Tralongo CL Randazzo M Berretta 2018 B-Glucans from grifola frondosa and ganoderma lucidum in breast cancer: an example of complementary and integrative medicine Oncotarget https://doi.org/10.18632/oncotarget.24984

    Article  PubMed  PubMed Central  Google Scholar 

  26. C Tropini KA Earle KC Huang JL Sonnenburg 2017 The gut microbiome: connecting spatial organization to function Cell Host Microbe 21 4 433 442 https://doi.org/10.1016/j.chom.2017.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T Valarmathi R Premkumar MF Benial A 2020 Spectroscopic and molecular docking studies on 1-Hydroxyanthraquinone: A potent ovarian cancer drug J Mol Struct https://doi.org/10.1016/j.molstruc.2020.128163

    Article  Google Scholar 

  28. ES Friedman K Bittinger TV Esipova L Hou L Chau J Jiang C Mesaros PJ Lund X Liang GA FitzGerald M Goulian D Lee BA Garcia IA Blair SA Vinogradov GD Wu 2018 Microbes vs chemistry in the origin of the anaerobic gut lumen Proc Natl Acad Sci USA 115 16 4170 4175 https://doi.org/10.1073/pnas.1718635115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. K Martinez-Guryn V Leone EB Chang 2019 Regional diversity of the gastrointestinal microbiome Cell Host Microbe 26 3 314 324 https://doi.org/10.1016/j.chom.2019.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A Allegra C Musolino A Tonacci G Pioggia S Gangemi 2020 Interactions between the MicroRNAs and microbiota in cancer development: roles and therapeutic opportunities Cancers (Basel) 12 4 805 https://doi.org/10.3390/cancers12040805

    Article  CAS  PubMed  Google Scholar 

  31. K Lu R Mahbub JG Fox 2015 Xenobiotics: interaction with the intestinal microflora ILAR J 56 2 218 227 https://doi.org/10.1093/ilar/ilv018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P Chen X Chen L Hao P Du C Li H Han H Xu L Liu 2021 The bioavailability of soybean polysaccharides and their metabolites on gut microbiota in the simulator of the human intestinal microbial ecosystem (SHIME) Food Chem 362 130233 130233 https://doi.org/10.1016/j.foodchem.2021.130233

    Article  CAS  PubMed  Google Scholar 

  33. B Hee van der JM Wells 2021 Microbial regulation of host physiology by short-chain fatty acids Trends Microbiol 29 8 700 712 https://doi.org/10.1016/j.tim.2021.02.001

    Article  CAS  PubMed  Google Scholar 

  34. KB Hooks MA O’Malley 2017 Dysbiosis and its discontents MBio https://doi.org/10.1128/mBio.01492-17

    Article  PubMed  PubMed Central  Google Scholar 

  35. D Toor MK Wsson P Kumar G Karthikeyan NK Kaushik C Goel S Singh A Kumar H Prakash 2019 Dysbiosis disrupts gut immune homeostasis and promotes gastric diseases Int J Mol Sci 20 10 2432 https://doi.org/10.3390/ijms20102432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. I Ahmed BC Roy SA Khan S Septer S Umar 2016 Microbiome, metabolome and inflammatory bowel disease Microorganisms 4 2 20 https://doi.org/10.3390/microorganisms4020020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A-S Bergot R Giri R Thomas 2019 The microbiome and rheumatoid arthritis Best Pract Res Clin Rheumatol 33 6 101497 https://doi.org/10.1016/j.berh.2020.101497

    Article  PubMed  Google Scholar 

  38. H Han Y Li J Fang G Liu J Yin T Li Y Yin 2018 Gut microbiota and type 1 diabetes Int J Mol Sci https://doi.org/10.3390/ijms19040995

    Article  PubMed  PubMed Central  Google Scholar 

  39. A Mirza Y Mao-Draayer 2017 The gut microbiome and microbial translocation in multiple sclerosis Clin Immunol 183 213 224 https://doi.org/10.1016/j.clim.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  40. N Katz-Agranov G Zandman-Goddard 2017 The microbiome and systemic lupus erythematosus Immunol Res 65 2 432 437 https://doi.org/10.1007/s12026-017-8906-2

    Article  CAS  PubMed  Google Scholar 

  41. RF Schwabe C Jobin 2013 The microbiome and cancer Nat Rev Cancer 13 11 800 812 https://doi.org/10.1038/nrc3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. N Kamada S-U Seo GY Chen G Núñez 2013 Role of the gut microbiota in immunity and inflammatory disease Nat Rev Immunol 13 5 321 335 https://doi.org/10.1038/nri3430

    Article  CAS  PubMed  Google Scholar 

  43. J-L Wang C-H Chang J-W Lin L-C Wu L-M Chuang M-S Lai 2014 Infection, antibiotic therapy and risk of colorectal cancer: a nationwide nested case-control study in patients with type 2 diabetes mellitus: infection, antibiotics and colon cancer Int J Cancer 135 4 956 967 https://doi.org/10.1002/ijc.28738

    Article  CAS  PubMed  Google Scholar 

  44. M Bonnet E Buc P Sauvanet C Darcha D Dubois B Pereira P Déchelotte R Bonnet D Pezet A Darfeuille-Michaud 2014 Colonization of the human gut by E. Coli and colorectal cancer risk Clin Cancer Res 20 4 859 867 https://doi.org/10.1158/1078-0432.CCR-13-1343

    Article  PubMed  Google Scholar 

  45. T Valarmathi R Premkumar MR Meera A Milton Franklin Benial 2021 Spectroscopic, Quantum Chemical and Molecular Docking Studies on 1-Amino-5-chloroanthraquinone: A Targeted Drug Therapy for Thyroid Cancer Spectrochim Acta 255 3 119659

    Article  CAS  Google Scholar 

  46. JC Arthur E Perez-Chanona M Mühlbauer S Tomkovich JM Uronis T-J Fan BJ Campbell T Abujamel B Dogan AB Rogers JM Rhodes A Stintzi KW Simpson JJ Hansen TO Keku AA Fodor C Jobin 2012 Intestinal inflammation targets cancer-inducing activity of the microbiota Science 338 6103 120 123 https://doi.org/10.1126/science.1224820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Y Zhan P-J Chen WD Sadler F Wang S Poe G Núñez KA Eaton GY Chen 2013 Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury Cancer Res 73 24 7199 7210 https://doi.org/10.1158/0008-5472.CAN-13-0827

    Article  CAS  PubMed  Google Scholar 

  48. P Louis GL Hold HJ Flint 2014 The gut microbiota, bacterial metabolites and colorectal cancer Nat Rev Microbiol 12 10 661 672 https://doi.org/10.1038/nrmicro3344

    Article  CAS  PubMed  Google Scholar 

  49. S Yoshimoto TM Loo K Atarashi H Kanda S Sato S Oyadomari Y Iwakura K Oshima H Morita M Hattori K Honda Y Ishikawa E Hara N Ohtani 2013 Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome Nature 499 7456 97 101 https://doi.org/10.1038/nature12347

    Article  CAS  PubMed  Google Scholar 

  50. DH Dapito A Mencin G-Y Gwak J-P Pradere M-K Jang I Mederacke JM Caviglia H Khiabanian A Adeyemi R Bataller JH Lefkowitch M Bower R Friedman RB Sartor R Rabadan RF Schwabe 2012 Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4 Cancer Cell 21 4 504 516 https://doi.org/10.1016/j.ccr.2012.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. C Xuan JM Shamonki A Chung ML Dinome M Chung PA Sieling DJ Lee 2014 Microbial dysbiosis is associated with human breast cancer PLoS ONE 9 1 e83744 https://doi.org/10.1371/journal.pone.0083744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. CM Velicer SR Heckbert JW Lampe JD Potter CA Robertson SH Taplin 2004 Antibiotic use in relation to the risk of breast cancer JAMA 291 7 827 835 https://doi.org/10.1001/jama.291.7.827

    Article  CAS  PubMed  Google Scholar 

  53. C Dejea E Wick CL Sears 2013 Bacterial oncogenesis in the colon Future Microbiol 8 4 445 460 https://doi.org/10.2217/fmb.13.17

    Article  CAS  PubMed  Google Scholar 

  54. SA Tsvetikova EI Koshel 2020 Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites Int J Med Microbiol 310 4 151425 https://doi.org/10.1016/j.ijmm.2020.151425

    Article  CAS  PubMed  Google Scholar 

  55. M Hatakeyama 2017 Structure and function of helicobacter pylori caga, the first-identified bacterial protein involved in human cancer Proc Jpn Acad Ser B Phys Biol Sci 93 4 196 219 https://doi.org/10.2183/pjab.93.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. AC Goodwin CE Destefano Shields S Wu DL Huso X Wu TR Murray-Stewart A Hacker-Prietz S Rabizadeh PM Woster CL Sears RA Casero Jr 2011 Polyamine catabolism contributes to enterotoxigenic bacteroides fragilis-induced colon tumorigenesis Proc Natl Acad Sci USA 108 37 15354 15359 https://doi.org/10.1073/pnas.1010203108

    Article  PubMed  PubMed Central  Google Scholar 

  57. MH Raza K Gul A Arshad N Riaz U Waheed A Rauf F Aldakheel S Alduraywish MU Rehman M Abdullah M Arshad 2019 Microbiota in cancer development and treatment J Cancer Res Clin Oncol 145 1 49 63 https://doi.org/10.1007/s00432-018-2816-0

    Article  CAS  PubMed  Google Scholar 

  58. CS Plottel MJ Blaser 2011 Microbiome and malignancy Cell Host Microbe 10 4 324 335 https://doi.org/10.1016/j.chom.2011.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. SF Doisneau-Sixou CM Sergio JS Carroll R Hui EA Musgrove RL Sutherland 2003 Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells Endocr Relat Cancer https://doi.org/10.1677/erc.0.0100179

    Article  PubMed  Google Scholar 

  60. M Fernández I Reina-Pérez J Astorga A Rodríguez-Carrillo J Plaza-Díaz L Fontana 2018 Breast cancer and its relationship with the microbiota Int J Environ Res Public Health 15 8 1747 https://doi.org/10.3390/ijerph15081747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. A Kilkkinen H Rissanen T Klaukka E Pukkala M Heliövaara P Huovinen S Männistö A Aromaa P Knekt 2008 Antibiotic use predicts an increased risk of cancer Int J Cancer 123 9 2152 2155 https://doi.org/10.1002/ijc.23622

    Article  CAS  PubMed  Google Scholar 

  62. M Conlon A Bird 2014 The impact of diet and lifestyle on gut microbiota and human health Nutrients 7 1 17 44 https://doi.org/10.3390/nu7010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O Fiehn 2002 Metabolomics-the link between genotypes and phenotypes Plant Mol Biol 48 1–2 155 171

    Article  CAS  PubMed  Google Scholar 

  64. V Aguiar-Pulido W Huang V Suarez-Ulloa T Cickovski K Mathee G Narasimhan 2016 Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data Evol Bioinform Online 12 Suppl 1 5 16 https://doi.org/10.4137/EBO.S36436

    Article  PubMed  PubMed Central  Google Scholar 

  65. P Vernocchi F Chierico Del L Putignani 2016 Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health Front Microbiol 7 1144 https://doi.org/10.3389/fmicb.2016.01144

    Article  PubMed  PubMed Central  Google Scholar 

  66. R Kumar P Eipers RB Little M Crowley DK Crossman EJ Lefkowitz CD Morrow 2014 Getting started with microbiome analysis: sample acquisition to bioinformatics Curr Protoc Hum Genet 82 1 1881 1929 https://doi.org/10.1002/0471142905.hg1808s82

    Article  Google Scholar 

  67. SJ Koyambo Konzapa GYRP Mbesse Kongbonga BSD Ramlina Vamhindi M Nsangou AM Franklin Benial 2021 Spectroscopic, quantum chemical, molecular docking and molecular dynamics investigations of hydroxylic indole-3-pyruvic acid: a potent candidate for nonlinear optical applications and Alzheimer’s drug J Biomol Struct Dyn https://doi.org/10.1080/07391102.2021.1947380

    Article  PubMed  Google Scholar 

  68. BB Aldridge KY Rhee 2014 Microbial metabolomics: innovation, application Insight Curr Opin Microbiol 19 90 96 https://doi.org/10.1016/j.mib.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  69. G Jan A-S Belzacq D Haouzi A Rouault D Métivier G Kroemer C Brenner 2002 Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria Cell Death Differ 9 2 179 188 https://doi.org/10.1038/sj.cdd.4400935

    Article  CAS  PubMed  Google Scholar 

  70. W Wei W Sun S Yu Y Yang L Ai 2016 Butyrate production from high-fiber diet protects against lymphoma tumor Leuk Lymphoma 57 10 2401 2408 https://doi.org/10.3109/10428194.2016.1144879

    Article  CAS  PubMed  Google Scholar 

  71. CM Paulos C Wrzesinski A Kaiser CS Hinrichs M Chieppa L Cassard DC Palmer A Boni P Muranski Z Yu L Gattinoni PA Antony SA Rosenberg NP Restifo 2007 Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T Cells via TLR4 signaling J Clin Invest 117 8 2197 2204 https://doi.org/10.1172/JCI32205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. J Paavonen P Naud J Salmerón CM Wheeler SN Chow D Apter H Kitchener X Castellsague JC Teixeira SR Skinner J Hedrick U Jaisamrarn G Limson S Garland A Szarewski B Romanowski FY Aoki TF Schwarz WA Poppe FX Bosch D Jenkins K Hardt T Zahaf D Descamps F Struyf M Lehtinen G Dubin 2009 Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV Types (PATRICIA): final analysis of a double-blind, randomised study in young women Lancet https://doi.org/10.1016/S0140-6736(09)61248-4

    Article  PubMed  Google Scholar 

  73. F Aranda N Bloy J Pesquet B Petit K Chaba A Sauvat O Kepp N Khadra D Enot C Pfirschke M Pittet L Zitvogel G Kroemer L Senovilla 2015 Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer Oncogene 34 23 3053 3062 https://doi.org/10.1038/onc.2014.234

    Article  CAS  PubMed  Google Scholar 

  74. A Dembiński Z Warzecha P Ceranowicz M Dembiński J Cieszkowski T Gosiewski M Bulanda B Kuśnierz-Cabala K Gałązka PC Konturek 2016 Synergic interaction of rifaximin and mutaflor (E. Coli Nissle 1917) in the treatment of acetic acid-induced colitis in rats Gastroenterol Res Pract 2016 3126280 https://doi.org/10.1155/2016/3126280

    Article  PubMed  PubMed Central  Google Scholar 

  75. H Konishi M Fujiya H Tanaka N Ueno K Moriichi J Sasajima K Ikuta H Akutsu H Tanabe Y Kohgo 2016 Probiotic-derived ferrichrome inhibits colon cancer progression via jnk-mediated apoptosis Nat Commun 7 1 12365 https://doi.org/10.1038/ncomms12365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. M Lenoir S Carmen Del NG Cortes-Perez D Lozano-Ojalvo D Muñoz-Provencio F Chain P Langella A de Moreno de LeBlanc JG LeBlanc LG Bermúdez-Humarán 2016 Lactobacillus Casei BL23 regulates Treg and Th17 T-Cell populations and reduces DMH-associated colorectal cancer J Gastroenterol 51 9 862 873 https://doi.org/10.1007/s00535-015-1158-9

    Article  CAS  PubMed  Google Scholar 

  77. J-W Lee J-G Shin EH Kim HE Kang IB Yim JY Kim H-G Joo HJ Woo 2004 Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of lactobacillus casei and bifidobacterium longum J Vet Sci 5 1 41 48 https://doi.org/10.4142/jvs.2004.5.1.41

    Article  PubMed  Google Scholar 

  78. C Baldwin M Millette D Oth MT Ruiz FM Luquet M Lacroix 2010 Probiotic Lactobacillus acidophilusandl caseimix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis Nutr Cancer 62 3 371 378 https://doi.org/10.1080/01635580903407197

    Article  CAS  PubMed  Google Scholar 

  79. A Takagi H Ikemura T Matsuzaki M Sato K Nomoto M Morotomi T Yokokura 2008 Relationship between the in vitro response of dendritic cells to lactobacillus and prevention of tumorigenesis in the mouse J Gastroenterol 43 9 661 669 https://doi.org/10.1007/s00535-008-2212-7

    Article  PubMed  Google Scholar 

  80. S Gavas S Quazi T Karpiński 2021 Nanoparticles for cancer therapy: current progress and challenges Nanoscale Res Lett https://doi.org/10.1186/s11671-021-03628-6

    Article  PubMed  PubMed Central  Google Scholar 

  81. JP Zackular NT Baxter KD Iverson WD Sadler JF Petrosino GY Chen PD Schloss 2013 The gut microbiome modulates colon tumorigenesis MBio 4 6 e00692 e713 https://doi.org/10.1128/mBio.00692-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. BD Wallace H Wang KT Lane JE Scott J Orans JS Koo M Venkatesh C Jobin L-A Yeh S Mani MR Redinbo 2010 Alleviating cancer drug toxicity by inhibiting a bacterial enzyme Science 330 6005 831 835 https://doi.org/10.1126/science.1191175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. M-T Liong 2008 Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence Int J Mol Sci 9 5 854 863 https://doi.org/10.3390/ijms9050854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. G Capurso M Marignani G Delle Fave 2006 Probiotics and the incidence of colorectal cancer: when evidence is not evident Dig Liver Dis 38 Suppl 2 S277 S282 https://doi.org/10.1016/S1590-8658(07)60010-3

    Article  PubMed  Google Scholar 

  85. LG Bermúdez-Humarán C Aubry J-P Motta C Deraison L Steidler N Vergnolle J-M Chatel P Langella 2013 Engineering Lactococci and Lactobacilli for Human Health Curr Opin Microbiol 16 3 278 283 https://doi.org/10.1016/j.mib.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  86. J Pol N Bloy F Obrist A Eggermont J Galon W Hervé Fridman I Cremer L Zitvogel G Kroemer L Galluzzi 2014 Trial watch: DNA vaccines for cancer therapy: DNA vaccines for cancer therapy Oncoimmunology 3 1 e28185 https://doi.org/10.4161/onci.28185

    Article  PubMed  PubMed Central  Google Scholar 

  87. F Sandoval M Terme M Nizard C Badoual M-F Bureau L Freyburger O Clement E Marcheteau A Gey G Fraisse C Bouguin N Merillon E Dransart T Tran F Quintin-Colonna G Autret M Thiebaud M Suleman S Riffault T-C Wu O Launay C Danel J Taieb J Richardson L Zitvogel WH Fridman L Johannes E Tartour 2013 Mucosal imprinting of vaccine-induced CD8+ T cells Is crucial to inhibit the growth of mucosal tumors Sci Transl Med https://doi.org/10.1126/scitranslmed.3004888

    Article  PubMed  PubMed Central  Google Scholar 

  88. A Hamad KC Fragkos A Forbes 2013 A systematic review and meta-analysis of probiotics for the management of radiation induced bowel disease Clin Nutr 32 3 353 360 https://doi.org/10.1016/j.clnu.2013.02.004

    Article  PubMed  Google Scholar 

  89. HS Taper MB Roberfroid 2005 Possible adjuvant cancer therapy by two prebiotics-inulin or oligofructose In Vivo 19 201 204

    CAS  PubMed  Google Scholar 

  90. E Holmes J Kinross GR Gibson R Burcelin W Jia S Pettersson JK Nicholson 2012 Therapeutic modulation of microbiota-host metabolic interactions Sci Transl Med https://doi.org/10.1126/scitranslmed.3004244

    Article  PubMed  Google Scholar 

  91. MG Gareau PM Sherman WA Walker 2010 Probiotics and the gut microbiota in intestinal health and disease Nat Rev Gastroenterol Hepatol 7 9 503 514 https://doi.org/10.1038/nrgastro.2010.117

    Article  PubMed  PubMed Central  Google Scholar 

  92. R Hendler Y Zhang 2018 Probiotics in the treatment of colorectal cancer Medicines (Basel) https://doi.org/10.3390/medicines5030101

    Article  PubMed  Google Scholar 

  93. A Górska D Przystupski MJ Niemczura J Kulbacka 2019 Probiotic bacteria: a promising tool in cancer prevention and therapy Curr Microbiol 76 8 939 949 https://doi.org/10.1007/s00284-019-01679-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. JM Kinross S Markar A Karthikesalingam A Chow N Penney D Silk 2013 A meta-analysis of probiotic and synbiotic use in elective surgery: does nutrition modulation of the gut microbiome improve clinical outcome? JPEN J Parenter Enteral Nutr 37 2 243 253 https://doi.org/10.1177/0148607112452306

    Article  PubMed  Google Scholar 

  95. CB Polakowski M Kato VB Preti MEM Schieferdecker AC Ligocki Campos 2019 Impact of the preoperative use of synbiotics in colorectal cancer patients: a prospective, randomized, double-blind Placebo-Controlled Study Nutrition 58 40 46 https://doi.org/10.1016/j.nut.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  96. C Jiang H Wang C Xia Q Dong E Chen Y Qiu Y Su H Xie L Zeng J Kuang F Ao X Gong J Li T Chen 2019 A randomized, double-blind, placebo-controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma Cancer 125 7 1081 1090 https://doi.org/10.1002/cncr.31907

    Article  CAS  PubMed  Google Scholar 

  97. S Quazi 2021 An overview of CAR T cell mediated B cell maturation antigen therapy Clin Lymphoma Myeloma Leuk https://doi.org/10.1016/j.clml.2021.12.003

    Article  PubMed  Google Scholar 

  98. MO Altonsy SC Andrews KM Tuohy 2010 Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway Int J Food Microbiol 137 2–3 190 203 https://doi.org/10.1016/j.ijfoodmicro.2009.11.015

    Article  PubMed  Google Scholar 

  99. A Borowicki A Michelmann K Stein D Scharlau K Scheu U Obst M Glei 2010 Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells Nutr Cancer https://doi.org/10.1080/01635581.2010.516874

    Article  Google Scholar 

  100. A Orlando MG Refolo C Messa L Amati P Lavermicocca V Guerra F Russo 2012 Antiproliferative and proapoptotic effects of viable or heat-killed lactobacillus paracaseiimpc2.1 and lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines Nutr Cancer https://doi.org/10.1080/01635581.2012.717676

    Article  PubMed  Google Scholar 

  101. F Russo A Orlando M Linsalata A Cavallini C Messa 2007 Effects Of Lactobacillus Rhamnosus GGon the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells Nutr Cancer 59 1 106 114 https://doi.org/10.1080/01635580701365084

    Article  CAS  PubMed  Google Scholar 

  102. S Quazi 2022 Artificial intelligence and machine learning in precision and genomic medicine Med Oncol 39 120 114 https://doi.org/10.1007/s12032-022-01711-1

    Article  PubMed  PubMed Central  Google Scholar 

  103. H Sadeghi-Aliabadi F Mohammadi H Fazeli M Mirlohi 2014 Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain Iran J Basic Med Sci 17 10 815 819

    PubMed  PubMed Central  Google Scholar 

  104. M Lopez N Li J Kataria M Russell J Neu 2008 Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 Cells J Nutr 138 11 2264 2268 https://doi.org/10.3945/jn.108.093658

    Article  CAS  PubMed  Google Scholar 

  105. EL Ma YJ Choi J Choi C Pothoulakis SH Rhee E Im 2010 The anticancer effect of probiotic bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition Int J Cancer 127 4 780 790 https://doi.org/10.1002/ijc.25011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. N-K Lee S-H Son EB Jeon GH Jung J-Y Lee H-D Paik 2015 The prophylactic effect of probiotic bacillus polyfermenticus KU3 against cancer cells J Funct Foods 14 513 518 https://doi.org/10.1016/j.jff.2015.02.019

    Article  CAS  Google Scholar 

  107. V Dubey AR Ghosh K Bishayee AR Khuda-Bukhsh 2016 Appraisal of the anti-cancer potential of probiotic pediococcus pentosaceus GS4 against colon cancer. in vitro and in vivo approaches J Funct Foods 23 66 79 https://doi.org/10.1016/j.jff.2016.02.032

    Article  CAS  Google Scholar 

  108. E Talero S Bolivar J Ávila-Román A Alcaide S Fiorucci V Motilva 2015 Inhibition of chronic ulcerative colitis-associated adenocarcinoma development in mice by VSL#3 Inflamm Bowel Dis 21 5 1027 1037 https://doi.org/10.1097/mib.0000000000000346

    Article  PubMed  Google Scholar 

  109. A Tiptiri-Kourpeti K Spyridopoulou V Santarmaki G Aindelis E Tompoulidou EE Lamprianidou G Saxami P Ypsilantis ES Lampri C Simopoulos I Kotsianidis A Galanis Y Kourkoutas D Dimitrellou K Chlichlia 2016 Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of trail in colon carcinoma cells PLoS ONE 11 2 e0147960 https://doi.org/10.1371/journal.pone.0147960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. G Saxami A Karapetsas E Lamprianidou I Kotsianidis A Chlichlia C Tassou V Zoumpourlis A Galanis 2016 Two potential probiotic Lactobacillus strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines J Funct Foods 24 461 471 https://doi.org/10.1016/j.jff.2016.04.036

    Article  CAS  Google Scholar 

  111. KJ Han N-K Lee H Park H-D Paik 2015 Anticancer and anti-inflammatory activity of probiotic Lactococcus Lactis NK34 J Microbiol Biotechnol 25 10 1697 1701 https://doi.org/10.4014/jmb.1503.03033

    Article  PubMed  Google Scholar 

  112. C Iyer A Kosters G Sethi AB Kunnumakkara BB Aggarwal J Versalovic 2008 Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-KappaB and MAPK signalling Cell Microbiol 10 7 1442 1452 https://doi.org/10.1111/j.1462-5822.2008.01137.x

    Article  CAS  PubMed  Google Scholar 

  113. Y Kim D Lee D Kim J Cho J Yang M Chung K Kim N Ha 2008 Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by bifidobacterium adolescentis SPM0212 Arch Pharm Res 31 4 468 473 https://doi.org/10.1007/s12272-001-1180-y

    Article  CAS  PubMed  Google Scholar 

  114. FJ Cousin S Jouan-Lanhouet M-T Dimanche-Boitrel L Corcos G Jan 2012 Milk fermented by propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells PLoS ONE 7 3 e31892 https://doi.org/10.1371/journal.pone.0031892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Y Kim S Oh HS Yun S Oh SH Kim 2010 Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells: antitumour activity of Cb-EPS via autophagy Lett Appl Microbiol https://doi.org/10.1111/j.1472-765x.2010.02859.x

    Article  PubMed  Google Scholar 

  116. MS Castro MA Molina P Sciullo Di MB Azpiroz F Leocata Nieto NB Sterín-Speziale C Mongini MA Manghi 2010 Beneficial activity of enterococcus faecalis CECT7121 in the Anti-lymphoma protective response: anti-tumour effects exerted by ent faecalis CECT7121 J Appl Microbiol https://doi.org/10.1111/j.1365-2672.2010.04747.x

    Article  PubMed  Google Scholar 

  117. M Thirabunyanon P Boonprasom P Niamsup 2009 Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells Biotechnol Lett 31 4 571 576 https://doi.org/10.1007/s10529-008-9902-3

    Article  CAS  PubMed  Google Scholar 

  118. Z-F Chen L-Y Ai J-L Wang L-L Ren Y-N Yu J Xu H-Y Chen J Yu M Li W-X Qin X Ma N Shen Y-X Chen J Hong J-Y Fang 2015 Probiotics clostridium butyricum and bacillus subtilis ameliorate intestinal tumorigenesis Future Microbiol 10 9 1433 1445 https://doi.org/10.2217/fmb.15.66

    Article  CAS  PubMed  Google Scholar 

  119. M Ghoneum J Gimzewski 2014 Apoptotic effect of a novel kefir product, pft, on multidrug-resistant myeloid leukemia cells via a hole-piercing mechanism Int J Oncol 44 3 830 837 https://doi.org/10.3892/ijo.2014.2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. M Thirabunyanon P Hongwittayakorn 2013 Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction Appl Biochem Biotechnol 169 2 511 525 https://doi.org/10.1007/s12010-012-9995-y

    Article  CAS  PubMed  Google Scholar 

  121. V Gosai P Ambalam M Raman CR Kothari RK Kothari BRM Vyas NR Sheth 2011 Protective effect of Lactobacillus Rhamnosus231 against N-Methyl-N’-Nitro-N-Nitrosoguanidine in animal model Gut Microbes 2 6 319 325 https://doi.org/10.4161/gmic.18755

    Article  PubMed  Google Scholar 

  122. CB Appleyard ML Cruz AA Isidro JC Arthur C Jobin C Simone De 2011 Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer Am J Physiol Gastrointest Liver Physiol 301 6 G1004 G1013 https://doi.org/10.1152/ajpgi.00167.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. I Bertkova E Hijova A Chmelarova G Mojzisova D Petrasova L Strojny A Bomba R Zitnan 2010 The effect of probiotic microorganisms and bioactive compounds on chemically induced carcinogenesis in rats Neoplasma 57 5 422 428 https://doi.org/10.4149/neo_2010_05_422

    Article  CAS  PubMed  Google Scholar 

  124. A Kumar NK Singh PR Sinha 2010 Inhibition of 1,2-Dimethylhydrazine induced colon genotoxicity in rats by the administration of probiotic curd Mol Biol Rep 37 3 1373 1376 https://doi.org/10.1007/s11033-009-9519-1

    Article  CAS  PubMed  Google Scholar 

  125. E Park G-I Jeon J-S Park H-D Paik 2007 A probiotic strain of bacillus polyfermenticus reduces DMH induced precancerous lesions in F344 male rat Biol Pharm Bull 30 3 569 574 https://doi.org/10.1248/bpb.30.569

    Article  CAS  PubMed  Google Scholar 

  126. S Walia R Kamal DK Dhawan SS Kanwar 2018 Chemoprevention by probiotics during 1,2-Dimethylhydrazine-induced colon carcinogenesis in rats Dig Dis Sci 63 4 900 909 https://doi.org/10.1007/s10620-018-4949-z

    Article  CAS  PubMed  Google Scholar 

  127. J Hu C Wang L Ye W Yang H Huang F Meng S Shi Z Ding 2015 Anti-tumour immune effect of oral administration of lactobacillus plantarum to CT26 tumourbearing mice J Biosci 40 269 279

    Article  CAS  PubMed  Google Scholar 

  128. A Verma G Shukla 2014 Synbiotic (Lactobacillus Rhamnosus+Lactobacillus Acidophilus+inulin) Attenuates oxidative stress and colonic damage in 1,2 Dimethylhydrazine Dihydrochloride-induced Colon carcinogenesis in sprague-Dawley rats: a long-term study Eur J Cancer Prev 23 6 550 559 https://doi.org/10.1097/cej.0000000000000054

    Article  CAS  PubMed  Google Scholar 

  129. J-H Chang YY Shim S-K Cha MJT Reaney KM Chee 2012 Effect of Lactobacillus Acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon J Med Microbiol 61 3 361 368 https://doi.org/10.1099/jmm.0.035154-0

    Article  CAS  PubMed  Google Scholar 

  130. Y Gamallat A Meyiah ED Kuugbee AM Hago G Chiwala A Awadasseid D Bamba X Zhang X Shang F Luo Y Xin 2016 Lactobacillus Rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model Biomed Pharmacother 83 536 541 https://doi.org/10.1016/j.biopha.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  131. ED Kuugbee X Shang Y Gamallat D Bamba A Awadasseid MA Suliman S Zang Y Ma G Chiwala Y Xin D Shang 2016 Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via tlr2 signaling in a rat model of colon cancer Dig Dis Sci 61 10 2908 2920 https://doi.org/10.1007/s10620-016-4238-7

    Article  CAS  PubMed  Google Scholar 

  132. M Zhang X Fan B Fang C Zhu J Zhu F Ren 2015 Effects of Lactobacillus Salivarius ren on cancer prevention and intestinal microbiota in 1, 2-Dimethylhydrazine-induced rat model J Microbiol 53 6 398 405 https://doi.org/10.1007/s12275-015-5046-z

    Article  PubMed  Google Scholar 

  133. B Sánchez S Delgado A Blanco-Míguez A Lourenço M Gueimonde A Margolles 2016 Probiotics, gut microbiota, and their influence on host health and disease Mol Nutr Food Res 61 1 1600240 https://doi.org/10.1002/mnfr.201600240

    Article  CAS  Google Scholar 

  134. CS Lee 2014 Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: the role of inflammation World J Gastroenterol 20 14 3751 https://doi.org/10.3748/wjg.v20.i14.3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. BR Goldin LJ Gualtieri RP Moore 1996 The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat Nutr Cancer 25 2 197 204 https://doi.org/10.1080/01635589609514442

    Article  CAS  PubMed  Google Scholar 

  136. L Khailova CH Baird AA Rush C Barnes PE Wischmeyer 2017 Lactobacillus Rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and Homeostasis of spleen and colon in experimental model of Pseudomonas Aeruginosa Pneumonia Clin Nutr 36 6 1549 1557 https://doi.org/10.1016/j.clnu.2016.09.025

    Article  CAS  PubMed  Google Scholar 

  137. Y Wang L Liu DJ Moore X Shen RM Peek SA Acra H Li X Ren DB Polk F Yan 2017 An LGG-derived protein promotes IgA production through upregulation of april expression in intestinal epithelial cells Mucosal Immunol 10 2 373 384 https://doi.org/10.1038/mi.2016.57

    Article  CAS  PubMed  Google Scholar 

  138. FLY Fong PV Kirjavainen H El-Nezami 2016 Immunomodulation of Lactobacillus Rhamnosus GG (LGG)-Derived soluble factors on antigen-presenting cells of healthy blood donors Sci Rep 6 1 22845 https://doi.org/10.1038/srep22845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. C-W Chang C-Y Liu H-C Lee Y-H Huang L-H Li J-SC Chiau T-E Wang C-H Chu S-C Shih T-H Tsai Y-J Chen 2018 Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5-Fluorouracil/Oxaliplatin-Induced intestinal injury in a syngeneic colorectal cancer model Front Microbiol 9 983 https://doi.org/10.3389/fmicb.2018.00983

    Article  PubMed  PubMed Central  Google Scholar 

  140. TE Riehl D Alvarado X Ee A Zuckerman L Foster V Kapoor D Thotala MA Ciorba WF Stenson 2019 Lactobacillus Rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells Gut 68 6 1003 1013 https://doi.org/10.1136/gutjnl-2018-316226

    Article  CAS  PubMed  Google Scholar 

  141. W Zhang Y-H Zhu G-Y Yang X Liu B Xia X Hu J-H Su J-F Wang 2017 Lactobacillus Rhamnosus GG affects microbiota and suppresses autophagy in the intestines of pigs challenged with salmonella infantis Front Microbiol 8 2705 https://doi.org/10.3389/fmicb.2017.02705

    Article  CAS  PubMed  Google Scholar 

  142. JY Kim HJ Woo KH Kim ER Kim HK Jung 2002 Antitumor activity of Lactobacillus plantarum cytoplasm on teratocarcinoma-bearing mice J Microbiol Biotechnol 12 998 1001

    Google Scholar 

  143. Salminen S; M Deighton. S. 1993. Lactic Acid Bacteria In: Salminen, S., von Wright, A., (Eds). Marcel Dekker Inc: New York.

  144. Y-H Chiu Y-J Hsieh K-W Liao K-C Peng 2010 Preferential promotion of apoptosis of monocytes by Lactobacillus Casei Rhamnosus soluble factors Clin Nutr 29 1 131 140 https://doi.org/10.1016/j.clnu.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  145. SS Choi Y Kim KS Han S You S Oh SH Kim 2006 Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro Lett Appl Microbiol 42 5 452 458 https://doi.org/10.1111/j.1472-765x.2006.01913.x

    Article  CAS  PubMed  Google Scholar 

  146. D Amenu Delesa 2017 Overview of anticancer activity of lactic acid bacteria Int J Adv Res Biol Sci https://doi.org/10.22192/ijarbs.2017.04.12.017

    Article  Google Scholar 

  147. B Nandhini M Palaniswamy 2013 Anticancer effect of goat milk fermented by Lactobacillus plantarum and Lactobacillus paracasei Intl J Pharm Pharm Sci 5 3 898 901

    Google Scholar 

  148. MR Adams P Marteau 1995 On the safety of lactic acid bacteria from food (Letter to the Editor) Intl J Fd Microbiol 27 263 264

    Article  CAS  Google Scholar 

  149. N Ishibashi S Yamazaki 2001 Probiotics and safety Am J Clin Nutr 73 2 Suppl 465S 470S https://doi.org/10.1093/ajcn/73.2.465s

    Article  CAS  PubMed  Google Scholar 

  150. N Ishibashi S Yamazaki 2022 Elucidation of CRISPR-Cas9 application in novel cellular immunotherapy Mol Biol Rep 49 7069 7077 https://doi.org/10.1007/s11033-022-07147-0

    Article  CAS  PubMed  Google Scholar 

  151. H Mäkeläinen R Tahvonen S Salminen AC Ouwehand 2003 In vivo safety assessment of two bifidobacterium longum strains Microbiol Immunol 47 12 911 914 https://doi.org/10.1111/j.1348-0421.2003.tb03464.x

    Article  PubMed  Google Scholar 

  152. SP Borriello WP Hammes W Holzapfel P Marteau J Schrezenmeir M Vaara V Valtonen 2003 Safety of probiotics that contain Lactobacilli or Bifidobacteria Clin Infect Dis 36 6 775 780 https://doi.org/10.1086/368080

    Article  CAS  PubMed  Google Scholar 

  153. KS Peggs SA Quezada AJ Korman JP Allison 2006 Principles and use of Anti-CTLA4 antibody in human cancer immunotherapy Curr Opin Immunol 18 2 206 213 https://doi.org/10.1016/j.coi.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  154. I Cohen WE Ruff EE Longbrake 2021 Influence of immunomodulatory drugs on the gut microbiota Transl Res 233 144 161 https://doi.org/10.1016/j.trsl.2021.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. O Pabst 2012 New concepts in the generation and functions of IgA Nat Rev Immunol 12 12 821 832 https://doi.org/10.1038/nri3322

    Article  CAS  PubMed  Google Scholar 

  156. DS Chen I Mellman 2013 Oncology meets immunology: the cancer-immunity cycle Immunity 39 1 1 10 https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  157. II Ivanov K Atarashi N Manel EL Brodie T Shima U Karaoz D Wei KC Goldfarb CA Santee SV Lynch T Tanoue A Imaoka K Itoh K Takeda Y Umesaki K Honda DR Littman 2009 Induction of intestinal Th17 cells by segmented filamentous bacteria Cell 139 3 485 498 https://doi.org/10.1016/j.cell.2009.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. K Atarashi T Tanoue T Shima A Imaoka T Kuwahara Y Momose G Cheng S Yamasaki T Saito Y Ohba T Taniguchi K Takeda S Hori II Ivanov Y Umesaki K Itoh K Honda 2011 Induction of colonic regulatory T Cells by indigenous clostridium species Science 331 6015 337 341 https://doi.org/10.1126/science.1198469

    Article  CAS  PubMed  Google Scholar 

  159. A Sivan L Corrales N Hubert JB Williams K Aquino-Michaels ZM Earley FW Benyamin YM Lei B Jabri M-L Alegre EB Chang TF Gajewski 2015 Commensal Bifidobacterium Promotes antitumor immunity and facilitates Anti-PD-L1 efficacy Science 350 6264 1084 1089 https://doi.org/10.1126/science.aac4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. M Vétizou JM Pitt R Daillère P Lepage N Waldschmitt C Flament S Rusakiewicz B Routy MP Roberti CPM Duong V Poirier-Colame A Roux S Becharef S Formenti E Golden S Cording G Eberl A Schlitzer F Ginhoux S Mani T Yamazaki N Jacquelot DP Enot M Bérard J Nigou P Opolon A Eggermont P-L Woerther E Chachaty N Chaput C Robert C Mateus G Kroemer D Raoult IG Boneca F Carbonnel M Chamaillard L Zitvogel 2015 Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota Science 350 6264 1079 1084 https://doi.org/10.1126/science.aad1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. J Huang Z Jiang Y Wang X Fan J Cai X Yao L Liu J Huang J He C Xie Q Wu Y Cao EL-H Leung 2020 Modulation of gut microbiota to overcome resistance to immune checkpoint blockade in cancer immunotherapy Curr Opin Pharmacol 54 1 10 https://doi.org/10.1016/j.coph.2020.06.004

    Article  CAS  PubMed  Google Scholar 

  162. T Tanoue S Morita DR Plichta AN Skelly W Suda Y Sugiura S Narushima H Vlamakis I Motoo K Sugita A Shiota K Takeshita K Yasuma-Mitobe D Riethmacher T Kaisho JM Norman D Mucida M Suematsu T Yaguchi V Bucci T Inoue Y Kawakami B Olle B Roberts M Hattori RJ Xavier K Atarashi K Honda 2019 A defined commensal consortium elicits CD8 T cells and anti-cancer immunity Nature 565 7741 600 605 https://doi.org/10.1038/s41586-019-0878-z

    Article  CAS  PubMed  Google Scholar 

  163. Q Zhu Z Jin W Wu R Gao B Guo Z Gao Y Yang H Qin 2014 Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer PLoS ONE 9 6 e90849 https://doi.org/10.1371/journal.pone.0090849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. P López M Gueimonde A Margolles A Suárez 2010 Distinct Bifidobacterium strains drive different immune responses in vitro Int J Food Microbiol 138 1–2 157 165 https://doi.org/10.1016/j.ijfoodmicro.2009.12.023

    Article  CAS  PubMed  Google Scholar 

  165. B Eiseman W Silen GS Bascom AJ Kauvar 1958 Fecal enema as An adjunct in the treatment of pseudomembranous enterocolitis Surgery 44 5 854 859

    CAS  PubMed  Google Scholar 

  166. Z Grigoryan MJ Shen SW Twardus MM Beuttler LA Chen A Bateman-House 2020 Fecal microbiota transplantation: uses, questions, and ethics Med Microecol 6 100027 100027 https://doi.org/10.1016/j.medmic.2020.100027

    Article  PubMed  PubMed Central  Google Scholar 

  167. K Neemann DD Eichele PW Smith R Bociek M Akhtari A Freifeld 2012 Fecal microbiota transplantation for fulminant clostridium difficile infection in an allogeneic stem cell transplant patient Transpl Infect Dis 14 6 E161 E165 https://doi.org/10.1111/tid.12017

    Article  CAS  PubMed  Google Scholar 

  168. CG Castro de Jr; Ganc, A. J., Ganc, R. L., Petrolli, M. S., Hamerschlack, N. 2015 Fecal microbiota transplant after hematopoietic SCT: report of a successful case Bone Marrow Transplant 50 1 145 https://doi.org/10.1038/bmt.2014.212

    Article  CAS  PubMed  Google Scholar 

  169. TJ Borody EF Warren SM Leis R Surace O Ashman S Siarakas 2004 Bacteriotherapy using fecal flora: toying with human motions J Clin Gastroenterol 38 6 475 483 https://doi.org/10.1097/01.mcg.0000128988.13808.dc

    Article  PubMed  Google Scholar 

  170. K Kakihana Y Fujioka W Suda Y Najima G Kuwata S Sasajima I Mimura H Morita D Sugiyama H Nishikawa M Hattori Y Hino S Ikegawa K Yamamoto T Toya N Doki K Koizumi K Honda K Ohashi 2016 Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut Blood 128 16 2083 2088 https://doi.org/10.1182/blood-2016-05-717652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. MSL Lee B Ramakrishna AC Moss HS Gold W Branch-Elliman 2020 Successful treatment of fulminant clostridioides difficile infection with emergent fecal microbiota transplantation in a patient with acute myeloid Leukemia and Prolonged, severe neutropenia Transpl Infect Dis 22 1 e13216 https://doi.org/10.1111/tid.13216

    Article  PubMed  Google Scholar 

  172. X Ding X Yang H Wang 2020 Methodology, efficacy and safety of fecal microbiota transplantation in treating inflammatory bowel disease Med Microecol 6 100028 100028 https://doi.org/10.1016/j.medmic.2020.100028

    Article  Google Scholar 

  173. P Moayyedi MG Surette PT Kim J Libertucci M Wolfe C Onischi D Armstrong JK Marshall Z Kassam W Reinisch CH Lee 2015 Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial Gastroenterology 149 1 102 109.e6 https://doi.org/10.1053/j.gastro.2015.04.001

    Article  PubMed  Google Scholar 

  174. NA Cohen N Maharshak 2017 Novel indications for fecal microbial transplantation: update and review of the literature Dig Dis Sci 62 5 1131 1145 https://doi.org/10.1007/s10620-017-4535-9

    Article  PubMed  Google Scholar 

  175. A Bafeta M Koh C Riveros P Ravaud 2018 Harms reporting in randomized controlled trials of interventions aimed at modifying microbiota: a systematic review Ann Intern Med 169 240 247 https://doi.org/10.7326/M18-0343HuffBA

    Article  PubMed  Google Scholar 

  176. S Quazi 2022 Telomerase gene therapy: a remission towards cancer Med Oncol 39 105 https://doi.org/10.1007/s12032-022-01702-2

    Article  PubMed  Google Scholar 

  177. BA Huff 2004 Caveat emptor. “probiotics” might not be what they seem Can Fam Physician 50 583 587

    PubMed  PubMed Central  Google Scholar 

  178. MAR Amalaradjou AK Bhunia 2013 Bioengineered probiotics, a strategic approach to control enteric infections Bioengineered 4 6 379 387 https://doi.org/10.4161/bioe.23574

    Article  PubMed  PubMed Central  Google Scholar 

  179. Quazi, S., 2021. TNFR2 Antagonist and Agonist: A Potential Therapeutics in Cancer Immunotherapy. Preprints.org.

  180. A Kajikawa K Masuda M Katoh S Igimi 2010 Adjuvant effects for oral immunization provided by recombinant Lactobacillus Casei secreting biologically active murine interleukin-1β Clin Vaccine Immunol https://doi.org/10.1128/CVI.00337-09

    Article  PubMed  Google Scholar 

  181. L Fredriksen CR Kleiveland LTO Hult T Lea CS Nygaard VGH Eijsink G Mathiesen 2012 Surface display of N-Terminally anchored invasin by Lactobacillus Plantarum activates NF-ΚB in monocytes Appl Environ Microbiol 78 16 5864 5871 https://doi.org/10.1128/AEM.01227-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. S Quazi 2021 Vaccine in response to COVID-19: Recent developments, challenges, and a way out Biomed Biotechnol Res J (BBRJ) 5 2 105

    Article  Google Scholar 

  183. LG Bermúdez-Humarán NG Cortes-Perez F Lefèvre V Guimarães S Rabot JM Alcocer-Gonzalez J-J Gratadoux C Rodriguez-Padilla RS Tamez-Guerra G Corthier A Gruss P Langella 2005 A novel mucosal vaccine based on live Lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus Type 16-Induced tumors J Immunol 175 11 7297 7302 https://doi.org/10.4049/jimmunol.175.11.7297

    Article  PubMed  Google Scholar 

  184. Y Li X Li H Liu S Zhuang J Yang F Zhang 2014 Intranasal immunization with Recombinant Lactococci carrying human papillomavirus E7 protein and mouse interleukin-12 DNA induces E7-specific antitumor effects in C57BL/6 mice Oncol Lett 7 2 576 582 https://doi.org/10.3892/ol.2013.1743

    Article  PubMed  Google Scholar 

  185. Z Wang Q Yu J Gao Q Yang 2012 Mucosal and systemic immune responses induced by Recombinant Lactobacillus spp expressing the hemagglutinin of the avian influenza virus H5N1 Clin Vaccine Immunol 19 2 174 179 https://doi.org/10.1128/CVI.05618-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. B Benbouziane P Ribelles C Aubry R Martin P Kharrat A Riazi P Langella LG Bermúdez-Humarán 2013 Development of a stress-inducible controlled expression (SICE) system in Lactococcus Lactis for the production and delivery of therapeutic molecules at mucosal surfaces J Biotechnol 168 2 120 129 https://doi.org/10.1016/j.jbiotec.2013.04.019

    Article  CAS  PubMed  Google Scholar 

  187. NG Cortes-Perez LG Bermúdez-Humarán Y Loir Le C Rodriguez-Padilla A Gruss O Saucedo-Cárdenas P Langella R Montes-de-Oca-Luna 2003 Mice immunization with live Lactococci displaying a surface anchored HPV-16 E7 oncoprotein FEMS Microbiol Lett 229 1 37 42 https://doi.org/10.1016/s0378-1097(03)00778-x

    Article  CAS  PubMed  Google Scholar 

  188. BR Rangel-Colmenero JG Gomez-Gutierrez J Villatoro-Hernández LM Zavala-Flores D Quistián-Martínez A Rojas-Martínez AY Arce-Mendoza S Guzmán-López R Montes-de-Oca-Luna O Saucedo-Cárdenas 2014 Enhancement of Ad-CRT/E7-Mediated antitumor effect by preimmunization with L Lactis expressing HPV-16 E7 Viral Immunol https://doi.org/10.1089/vim.2014.0055

    Article  PubMed  Google Scholar 

  189. M Fujimori J Amano S Taniguchi 2002 The Genus Bifidobacterium for cancer gene therapy Curr Opin Drug Discov Devel 5 2 200 203

    CAS  PubMed  Google Scholar 

  190. T Sasaki M Fujimori Y Hamaji Y Hama K-I Ito J Amano S Taniguchi 2006 Genetically engineered Bifidobacterium Longum for Tumor-Targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats Cancer Sci 97 7 649 657 https://doi.org/10.1111/j.1349-7006.2006.00221.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. M Fujimori 2006 Genetically engineered Bifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients Breast Cancer 13 1 27 31 https://doi.org/10.2325/jbcs.13.27

    Article  PubMed  Google Scholar 

  192. C Wei AY Xun XX Wei J Yao JY Wang RY Shi GH Yang YX Li ZL Xu MG Lai R Zhang L-S Wang WS Zeng 2016 Bifidobacteria expressing tumstatin protein for antitumor therapy in tumor-bearing mice Technol Cancer Res Treat 15 3 498 508 https://doi.org/10.1177/1533034615581977

    Article  CAS  PubMed  Google Scholar 

  193. S Carmen Del AD LeBlanc de R Levit V Azevedo P Langella LG Bermúdez-Humarán JG LeBlanc 2017 Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model Int Immunopharmacol 42 122 129 https://doi.org/10.1016/j.intimp.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  194. C Yi Y Huang Z-Y Guo S-R Wang 2005 Antitumor effect of cytosine deaminase/5-Fluorocytosine suicide Gene therapy system mediated by Bifidobacterium infantis on melanoma Acta Pharmacol Sin 26 5 629 634 https://doi.org/10.1111/j.1745-7254.2005.00094.x

    Article  CAS  PubMed  Google Scholar 

  195. W Li C-B Li 2005 Effect of Oral Lactococcus Lactis containing endostatin on 1, 2-Dimethylhydrazine-Induced colon tumor in rats World J Gastroenterol 11 46 7242 7247 https://doi.org/10.3748/wjg.v11.i46.7242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. G-F Fu X Li Y-Y Hou Y-R Fan W-H Liu G-X Xu 2005 Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer Cancer Gene Ther 12 2 133 140 https://doi.org/10.1038/sj.cgt.7700758

    Article  CAS  PubMed  Google Scholar 

  197. C Wang Y Ma Q Hu T Xie J Wu F Zeng F Song 2016 Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors BMC Cancer 16 1 545 https://doi.org/10.1186/s12885-016-2608-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Quazi.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

N/A.

Informed consent

N/A

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12032-025-02733-1"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quazi, S. RETRACTED ARTICLE: Anti-cancer activity of human gastrointestinal bacteria. Med Oncol 39, 220 (2022). https://doi.org/10.1007/s12032-022-01771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01771-3

Keywords