Skip to main content

Advertisement

Log in

Biomolecular basis of the role of chronic psychological stress hormone ‘‘glucocorticoid’’ in alteration of cellular immunity during cancer

  • review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Abstract

Psychoneuroimmunology is the newly evolved science that describes the interaction between mind and body, mediated by reciprocal communications among the nervous, endocrine, and immune systems. This paper reviews the interrelationship between chronic psychological stress and cellular immunity during the progression of cancer. The immune system possesses the specialized defense mechanisms where an extensive network of immune cells exists through their cytokine milieu, which in turn can get highly affected by psychological stress. Under stressful conditions, the body increases the production of glucocorticoids via hypothalamic pituitary adrenal (HPA) axis. Glucocorticoids (GCs) suppress the cell mediated immunity (CMI) by reducing the production of cytokines and other effector molecules through the inhibition of transcription factors responsible for cytokine gene expression, mediated by glucocorticoid receptor. GCs inhibit the activities of natural killer (NK) cells, cytotoxic T lymphocytes (CTL), T helper (Th) cells, natural killer T (NKT) cells, macrophages and dendritic cells which play a vital role in tumor suppression. Th1 cytokines which activate the NK cell, CTL and macrophages are also inhibited by GCs. GCs are able to alter the appearance of macrophages and dendritic cells, providing pro-tumor activities, and also able to inhibit the antigen presentation which causes dysfunction of the adaptive immune response against tumor. GCs have been shown to reduce the expression of perforin, granzymes, tumor necrosis factor (TNF)- α, interferon (IFN)- γ, Fas, TNF receptor activation induced ligand (TRAIL), and other effector molecules which have direct effects in tumor destruction. Additionally, glucocorticoids induce tolerogenic dendritic cells and stimulate the Treg cells to block the NK cell, CTL, NKT cell, and Th cell activity. Finally, it has been shown that chronic psychological stress exerts different immunomodulatory activities which facilitate the progression of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71:9–15.

    PubMed  CAS  Google Scholar 

  2. Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax. 2000;55:603–13.

    Article  PubMed  CAS  Google Scholar 

  3. Refojo D, Liberman AC, Holsboer F, Arzt E. Transcription factor-mediated molecular mechanisms involved in the functional cross-talk between cytokines and glucocorticoids. Immunol Cell Biol. 2001;79:385–94.

    Article  PubMed  CAS  Google Scholar 

  4. Zorilla EP, Luborsky L, McKay JR. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun. 2001;15(3):199–226.

    Article  CAS  Google Scholar 

  5. Kiecolt-Glaser JK, McGuire L, Robles TF, et al. Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology. Annu Rev Psychol. 2002;53:83–107.

    Article  PubMed  Google Scholar 

  6. Greenfeld K, Avraham R, Benish M, et al. Immune suppression while awaiting surgery and following it: dissociations between plasma cytokine levels, their induced production, and NK cell cytotoxicity. Brain Behav Immun. 2007;21(4):503–13.

    Article  PubMed  CAS  Google Scholar 

  7. Saul AN, Oberyszyn TM, Daugherty C, et al. Chronic stress and susceptibility to skin cancer. J Natl Cancer Inst. 2005;97(23):1760–7.

    Article  PubMed  CAS  Google Scholar 

  8. Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, Yamamoto KR. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc Natl Acad Sci U S A. 2004;101:15603–8.

    Article  PubMed  CAS  Google Scholar 

  9. Adcock IM. Glucocorticoid-regulated transcription factors. Pulm Pharmacol Ther. 2001;14:211–9.

    Article  PubMed  CAS  Google Scholar 

  10. Levy EM, Roberti MP, Mordoh J. Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol. 2011;2011:676198.

    Article  PubMed  CAS  Google Scholar 

  11. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.

    Article  PubMed  CAS  Google Scholar 

  12. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature. 1986;319(6055):675–8.

    Article  PubMed  CAS  Google Scholar 

  13. Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 2004;172:1455–62.

    PubMed  CAS  Google Scholar 

  14. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature. 2001;413(6852):165–71.

    Article  PubMed  CAS  Google Scholar 

  15. Cerwenka A, Baron JL, Lanier LL. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci U S A. 2001;98(20):11521–6.

    Article  PubMed  CAS  Google Scholar 

  16. Zamai L, Ponti C, Mirandola P, et al. NK cells and cancer. J Immunol. 2007;178:4011–6.

    PubMed  CAS  Google Scholar 

  17. Kelly JM, Darcy PK, Markby JL, et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol. 2002;3(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  18. Bottino C, Moretta L, Pende D, Vitale M, Moretta A. Learning how to discriminate between friends and enemies, a lesson from natural killer cells. Mol. Immunol. 2004;41:569–75.

    Article  PubMed  CAS  Google Scholar 

  19. Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Different checkpoints in human NK-cell activation. Trends Immunol. 2004;25:670–6.

    Article  PubMed  CAS  Google Scholar 

  20. Trinchieri G. Biology of natural killer cells. Adv. Immunol. 1989;47:187–376.

    Article  PubMed  CAS  Google Scholar 

  21. Sivori S, Carlomagno S, Moretta L,Moretta A. Comparison of different CpG oligodeoxynucleotide classes for their capability to stimulate human NK cells. Eur. J. Immunol. 2006;36:961–7.

    Article  PubMed  CAS  Google Scholar 

  22. Moretta L, Ferlazzo G,Bottino C, Vitale M, Pende D, Zingari MC, Moretta A. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol. 2006;214:219–228.

    Article  CAS  Google Scholar 

  23. Pende D, Bottino C, Castriconi R, et al. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol. Immunol. 2005;42:463–9.

    Article  PubMed  CAS  Google Scholar 

  24. Smyth MJ, Hayakawa Y, et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2:850–61.

    Article  PubMed  CAS  Google Scholar 

  25. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46.

    Article  PubMed  CAS  Google Scholar 

  26. Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr Opin Immunol. 2005;17:29–35.

    Article  PubMed  CAS  Google Scholar 

  27. Ferlazzo G, Munz C. NK cell compartments and their activation by dendritic cells. J Immunol. 2004;172:1333–9.

    PubMed  CAS  Google Scholar 

  28. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol. 2004;25:47–52.

    Article  PubMed  CAS  Google Scholar 

  29. Brady J, Hayakawa Y, Smyth MJ, Nutt SL. IL-21 induces the functional maturation of murine NK cells. J Immunol. 2004;172:2048–58.

    PubMed  CAS  Google Scholar 

  30. Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358:502–11.

    Article  PubMed  CAS  Google Scholar 

  31. Lauwerys BR, Garot N, Renauld JC, Houssiau FA. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol. 2000;165:1847–53.

    PubMed  CAS  Google Scholar 

  32. Golab J. Interleukin 18-interferon inducing factor a novel player in tumor immunotherapy? Cytokine. 2000;12:332–8.

    Article  PubMed  CAS  Google Scholar 

  33. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med. 1998;188:2375–80.

    Article  PubMed  CAS  Google Scholar 

  34. Mirandola P, Ponti C, Gobbi G, Sponzilli I, et al. Activated human NK and CD8 T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood. 2004;104:2418–24.

    Article  PubMed  CAS  Google Scholar 

  35. Sinkovics JG, Horvath JC. Human natural killer cells: a comprehensive review. Int J Oncol. 2005;27:5–47.

    PubMed  CAS  Google Scholar 

  36. Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y. CD4CD25 T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol. 2006;176:1582–7.

    PubMed  CAS  Google Scholar 

  37. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC. Apoptosis and interferons: role of interferon- stimulated genes as mediators of apoptosis. Apoptosis. 2003;8:237–49.

    Article  PubMed  CAS  Google Scholar 

  38. Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, Van Den Brink MR, Yagita H. Nature’s TRAIL on a path to cancer immunotherapy. Immunity. 2003;18:1–6.

    Article  PubMed  CAS  Google Scholar 

  39. Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev. 2007;220:129–50.

    Article  PubMed  CAS  Google Scholar 

  40. Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med. 2007;13:1155–9.

    Article  PubMed  CAS  Google Scholar 

  41. Hashimoto SI, Suzuki T, Nagai S, Yamashita T, Toyoda N, Matsushima K. Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression. Blood. 2000;96:2206–14.

    PubMed  CAS  Google Scholar 

  42. Sandel MH, Dadabayev AR, Menon AG, et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res. 2005;11:2576–82.

    Article  PubMed  CAS  Google Scholar 

  43. Caux C, Vanbervliet B, Massacrier C, et al. Regulation of dendritic cell recruitment by chemokines. Transplantation. 2002;73:S7–11.

    Article  PubMed  CAS  Google Scholar 

  44. Clark GJ, Angel N, Kato M, Lopez J A, MacDonald K, Vuckovic S, Hart DN. The role of dendritic cells in the innate immune system. Microbes Infect. 2000;2:257–72.

    Article  PubMed  CAS  Google Scholar 

  45. Manna PP, Mohanakumar T. Human dendritic cell mediated cytotoxicity against breast carcinoma cells in vitro. J Leukoc Biol. 2002;72:312–20.

    PubMed  CAS  Google Scholar 

  46. Huang J, Tatsumi T, Pizzoferrato E, Vujanovic N, Storkus WJ. Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation. Cancer Res. 2005;65:8461–70.

    Article  PubMed  CAS  Google Scholar 

  47. Nicolas A, Cathelin D, Larmonier N, Fraszczak J, Puig PE, Bouchot A, Bateman A, Solary E, Bonnotte B. Dendritic cells trigger tumor cell death by a nitric oxide dependent mechanism. J Immunol. 2007;179:812–8.

    PubMed  CAS  Google Scholar 

  48. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13:4677–85.

    Article  PubMed  CAS  Google Scholar 

  49. Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med. 2003;197:1141–51.

    Article  PubMed  CAS  Google Scholar 

  50. Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ. Polarized type 1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1- type antimelanoma CD4 + T cell responses in vitro. J Immunother. 30:75–82, 2007.

    Article  PubMed  CAS  Google Scholar 

  51. Tourkova IL, Shurin GV, Chatta GS, Perez L, Finke J, Whiteside TL, Ferrone S, Shurin MR. Restoration by IL-15 of MHC class I antigen processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol. 2005;175:3045–52.

    PubMed  CAS  Google Scholar 

  52. Gerner MY, Casey KA, Mescher MF. Defective MHC class II presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses. J Immunol. 2008;181:155–64.

    PubMed  CAS  Google Scholar 

  53. Shurin MR, Gabrilovich DI. Regulation of dendritic cell system by tumor. Cancer Res Ther Control. 2001;11:65–78.

    Google Scholar 

  54. Lan YY, Wang Z, Raimondi G, Wu W, Colvin BL, de Creus A, Thomson AW. ‘‘Alternatively activated’’ dendritic cells preferentially secrete IL-10, expand Foxp3 +CD4 + T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol. 2006;177:5868–77.

    PubMed  CAS  Google Scholar 

  55. Shurin MR, Chatta G. Immunobiology of dendritic cells in cancer. In: Mechanisms of therapeutic reversal of immune suppression in cancer. Gabrilovich DI, Hurtwiz A (eds). 2008. pp. 101–30.

  56. Shurin GV, Yurkovetsky ZR, Shurin MR. Tumor-induced dendritic cell dysfunction. In: Ochoa AC, editor. Mechanisms of tumor escape from the immune response. New York: Taylor & Francis; 2003. pp. 112–38.

    Google Scholar 

  57. Bellone G, Carbone A, Smirne C, et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol. 2006;177:3448–60.

    PubMed  CAS  Google Scholar 

  58. Capobianco A, Rovere-Querini P, Rugarli C, Manfredi AA. Melanoma cells interfere with the interaction of dendritic cells with NK/LAK cells. Int J Cancer. 2006;119:2861–9.

    Article  PubMed  CAS  Google Scholar 

  59. Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, et al. Activation of a TGF-β specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J Immunol. 2008;180:6553–65.

    PubMed  CAS  Google Scholar 

  60. Sher A, Pearce E, Kaye P. Shaping the immune response to parasites: role of dendritic cells. Curr Opin Immunol. 2003;15:421–9.

    Article  PubMed  CAS  Google Scholar 

  61. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    Article  PubMed  CAS  Google Scholar 

  62. Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004;14:628–38.

    Article  PubMed  CAS  Google Scholar 

  63. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):pp. 557–63.

    Article  PubMed  CAS  Google Scholar 

  64. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  PubMed  CAS  Google Scholar 

  65. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    Article  PubMed  CAS  Google Scholar 

  66. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23:344–6.

    Article  PubMed  CAS  Google Scholar 

  67. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  PubMed  CAS  Google Scholar 

  68. Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria. Proc Natl Acad Sci U S A. 2004;101:4560–5.

    Article  PubMed  CAS  Google Scholar 

  69. Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. 2009;33(3–4):222–30.

    Article  PubMed  CAS  Google Scholar 

  70. Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–97.

    Article  PubMed  CAS  Google Scholar 

  71. Hussein MR. Tumor-associated macrophages and melanoma tumorigenesis: integrating the complexity. Int J Exp Pathol. 2006;87:163–76.

    Article  PubMed  Google Scholar 

  72. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  PubMed  CAS  Google Scholar 

  73. Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S. Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol. 2005;61:10–17.

    Article  PubMed  CAS  Google Scholar 

  74. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73.

    Article  PubMed  CAS  Google Scholar 

  75. Sica A, Schioppab T, Mantovania T, Allavenaa P. Tumor-associated macrophages are a distinct M2 polarized population promoting tumor progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717–27.

    Article  PubMed  CAS  Google Scholar 

  76. Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer. 2004;4:71–8.

    Article  PubMed  CAS  Google Scholar 

  77. Cruse JM, Lewis RE. The immune system victorious: selective preservation of self. Immunol Res. 1993;12(2):101–14.

    Google Scholar 

  78. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17(3):138–46.

    Article  PubMed  CAS  Google Scholar 

  79. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science. 1996;272(5258):50–3.

    Article  PubMed  CAS  Google Scholar 

  80. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–76.

    Article  PubMed  CAS  Google Scholar 

  81. Elenkov IJ. Glucocorticoids and the Th1/Th2 Balance. Ann N Y Acad. Sci. 2004;1024:138–46.

    Article  PubMed  CAS  Google Scholar 

  82. Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  83. Aspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC, Su D, et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4 + T cells that facilitate tumor development. J Exp Med. 2007;204(5):1037–47.

    Article  PubMed  CAS  Google Scholar 

  84. DeNardo DG, Baretto JB, Andreu P, Vasquez L, Kolhatkar N, Tawfik D, et al. CD4 +  T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16(2):91–102.

    Article  PubMed  CAS  Google Scholar 

  85. Kimball JW. Cytotoxic T Lymphocytes (CTL), http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CTL.html.

  86. Nagata S. Fas-mediated apoptosis. Adv Exp Med Biol. 1996;406:119–24.

    Article  PubMed  CAS  Google Scholar 

  87. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what’s in a name? Nat Rev Immunol. 2004;4:231–7.

    Article  PubMed  CAS  Google Scholar 

  88. Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol. 2005;23:877–900.

    Article  PubMed  CAS  Google Scholar 

  89. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H. The regulatory role of V14 NKT cells in innate and acquired immune response. Annu Rev Immunol. 2003;21:483–513.

    Article  PubMed  CAS  Google Scholar 

  90. Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114:1379–88.

    PubMed  CAS  Google Scholar 

  91. Terabe M, Berzofsky JA. The role of NKT cells in tumor immunity. Adv Cancer Res. 2008;101:277–348.

    Article  PubMed  CAS  Google Scholar 

  92. Crowe NY, Smyth MJ, Godfrey DI. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med. 2002;196:119–27.

    Article  PubMed  CAS  Google Scholar 

  93. Kitamura HK, Iwakabe T, Yahata S, Nishimura A, Ohta Y, Ohmi M, Sato K, Takeda K. Okumura L, Van Kaer, et al. The natural killer T (NKT) cell ligand galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med. 1999;189:1121–8.

    Article  PubMed  CAS  Google Scholar 

  94. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005;6:353.

    Article  PubMed  CAS  Google Scholar 

  95. Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol. 2006;16:115.

    Article  PubMed  CAS  Google Scholar 

  96. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses. Int Immunol. 2009;21;1105–6.

    Article  PubMed  CAS  Google Scholar 

  97. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108:804–11.

    Article  PubMed  CAS  Google Scholar 

  98. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4( + ) CD25( + ) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61:4766–72.

    PubMed  CAS  Google Scholar 

  99. Colombo MP, Piconese S. Regulatory T cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer. 2007;7:880–7.

    Article  PubMed  CAS  Google Scholar 

  100. Woo EY, Yeh H, Chu CS, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002;168:4272–6.

    PubMed  CAS  Google Scholar 

  101. Shevach EM. CD4 + CD25 + suppressor T cells: more questions than answers. Nat Rev Immunol. 2002;2:389–400.

    PubMed  CAS  Google Scholar 

  102. Sakaguchi S. Naturally arising CD4 + regulatory T cells for immunologic self tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.

    Article  PubMed  CAS  Google Scholar 

  103. Krukowskia K, Eddya J, Kosika KL, Konleya T, Janusekb LW, Mathewsa HL. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun. 2011;25(2):239–49.

    Article  CAS  Google Scholar 

  104. Byrnes MD, Antoni MH, Goodkin K, et al. Stressful events, pessimism, natural killer cell cytotoxicity, and cytotoxic/suppressor T cells in HIV +  black women at risk for cervical cancer. Psychosom Med. 1998;60:714–22.

    PubMed  CAS  Google Scholar 

  105. Irwin M, Daniels M, Risch C, et al. Plasma cortisol and natural killer cell activity during bereavement. Biol Psychiatry. 1988;24:173–78.

    Article  PubMed  CAS  Google Scholar 

  106. Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, et al. Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 2005;23:7105–13.

    Article  PubMed  Google Scholar 

  107. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30.

    Article  PubMed  Google Scholar 

  108. Dragoş D, Tănăsescu MD. The effect of stress on the defense systems. J Med Life. 2010;3:10–18.

    PubMed  Google Scholar 

  109. Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20:6891–903.

    Article  PubMed  CAS  Google Scholar 

  110. Lim HY, Muller N, Herold MJ, et al. Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology. 2007;122:47–53.

    Article  PubMed  CAS  Google Scholar 

  111. Schmidt M, Pauels HG, et al. Glucocorticoids induce apoptosis in human monocytes: potential role of IL-1β. J Immunol. 1999;163:3484–90.

    PubMed  CAS  Google Scholar 

  112. Tuckermann JP, Kleiman A, Moriggl R, Spanbroek R, Neumann A, Illing A, Clausen BE, et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J Clin Invest. 2007;117(5):1381–90.

    Article  PubMed  CAS  Google Scholar 

  113. Truckenmiller ME, Bonneau RH, Norbury CC. Stress presents a problem for dendritic cells: corticosterone and the fate of MHC class I antigen processing and presentation. Brain Behav Immun. 2006;20:210–18.

    Article  PubMed  CAS  Google Scholar 

  114. Moser M, De Smedt T, Sornasse T,Tielemans F, Chentoufi AA, Muraille E, Van Mechelen M, Urbain J, Leo O. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur. J. Immunol. 1995;25(10):2818–24.

    Article  PubMed  CAS  Google Scholar 

  115. Dhabhar FS, Satoskar AR, Bluethmann H, David JR, McEwen BS. Stress-induced enhancement of skin immune function: a role for gamma interferon. Proc Natl Acad Sci U S A. 2000;97:2846–51.

    Article  PubMed  CAS  Google Scholar 

  116. Elftman MD, Norbury CC, Bonneau RH, Truckenmiller ME. Corticosterone impairs dendritic cell maturation and function. Immunology. 2007;122:279–90.

    Article  PubMed  CAS  Google Scholar 

  117. Truckenmiller ME, Princiotta MF, Norbury CC, Bonneau RH. Corticosterone impairsMHCclass I antigen presentation by dendritic cells via reduction of peptide generation. J Neuroimmunol. 2005;160:48–60.

    Article  PubMed  CAS  Google Scholar 

  118. Matyszak MK, Citterio S, Rescigno M, Ricciardi-Castagnoli P. Differential effects of corticosteroids during different stages of dendritic cell maturation. Eur J Immunol. 2000;30(4):1233–42.

    Article  PubMed  CAS  Google Scholar 

  119. Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108(5):1435–40.

    Article  PubMed  CAS  Google Scholar 

  120. Chamorro v, Garcia-Vallejo JJ, Unger WWJ, et al. TLR Triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J Immunol. 2009;183(5):2984–94.

    Article  PubMed  Google Scholar 

  121. Ramirez F, Fowell DJ, Puklavec M, Simmonds S, Mason D. Glucocorticoids promote a TH2 cytokine response by CD4 +  T cells in vitro. J Immunol. 1996;156(7):2406–12.

    PubMed  CAS  Google Scholar 

  122. Franchimont D, Galon J, Gadina M, et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol. 2000;164(4):1768–74.

    PubMed  CAS  Google Scholar 

  123. Saul AN et al. Chronic stress and susceptibility to skin cancer. J. Natl Cancer Inst. 2005;97:1760–7.

    Article  PubMed  CAS  Google Scholar 

  124. Hamdi H, Godot V, Maillot MC, et al. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood. 2007;110:211–9.

    Article  PubMed  CAS  Google Scholar 

  125. Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortaldo JR, Howard OM. Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3( + )CD4( + )CD25( + ) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol. 2006;36:2139.

    Article  PubMed  CAS  Google Scholar 

  126. Chen CC, David AS, Nunnerley H, et al. Adverse life events and breast cancer: case-control study. BMJ. 1995;311:1527–30.

    Article  PubMed  CAS  Google Scholar 

  127. Duijts SF, Zeegers MP, Borne BV. The association between stressful life events and breast cancer risk: a metaanalysis. Int J Cancer. 2003;107:1023–29.

    Article  PubMed  CAS  Google Scholar 

  128. Geyer S. Life events prior to manifestation of breast cancer: a limited prospective study covering eight years before diagnosis. J Psychosom Res. 1991;35:355–63.

    Article  PubMed  CAS  Google Scholar 

  129. Lillberg K, Verkasalo PK, Kaprio J, et al. Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol. 2003;157:415–23.

    Article  PubMed  Google Scholar 

  130. Giraldi T, Rodani MG, Cartei G, et al. Psychosocial factors and breast cancer: a 6-year Italian follow-up study. Psychother Psychosom. 1997;66:229–36.

    Article  PubMed  CAS  Google Scholar 

  131. Penninx BW, Guralnik JM, Pahor M, et al. Chronically depressed mood and cancer risk in older persons. J Natl Cancer Inst. 1998;90:1888–93.

    Article  PubMed  CAS  Google Scholar 

  132. Price MA, Tennant CC, Smith RC, et al. The role of psychosocial factors in the development of breast carcinoma: Part I. The cancer prone personality. Cancer. 2001;91:679–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that  there are no actual or potential conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rubayet Ahsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahsan, M., Mahmud-Al-Rafat, A., Sobhani, ME. et al. Biomolecular basis of the role of chronic psychological stress hormone ‘‘glucocorticoid’’ in alteration of cellular immunity during cancer. memo 6, 127–136 (2013). https://doi.org/10.1007/s12254-013-0075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-013-0075-y

Keywords