Skip to main content

Advertisement

Log in

Effect of maternal exposure to antibiotics during pregnancy on the neonatal intestinal microbiome and health

  • Clinical Review
  • Published:
Clinical Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Antibiotics are widely used during pregnancy. Recent epidemiological studies suggest that maternal exposure to antibiotics during pregnancy is associated with increased risks of various diseases in offspring; host-microbiome interactions are considered to be involved in pathogenesis, as antibiotic-induced perturbations (dysbiosis) of the maternal microbiome can be transmitted to offspring. We reviewed the current status of antibiotic usage during pregnancy, transmission of maternal antibiotic-induced dysbiosis to offspring, and several diseases in offspring reported to be associated with maternal antibiotic exposure. Antibiotics must be properly used when necessary. While the adverse effect of maternal antibiotic exposure during pregnancy on the health of offspring has been demonstrated by several studies, more robust clinical evidence is necessary to define the best practice for antibiotic use during pregnancy. Epidemiologic studies have limitations in establishing causal links beyond associations; animal studies provide benefits in examining these links, however, microbiomes, gestation courses, and aging vary between host species. Understanding the underlying mechanisms of epidemiologic findings as well as the healthy microbiome during pregnancy and early life in humans would contribute to developing future microbial interventions for restoring antibiotic-induced dysbiosis during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gestels T, Vandenplas Y. Prenatal and perinatal antibiotic exposure and long-term outcome. Pediatr Gastroenterol Hepatol Nutr. 2023;26:135–45. https://doi.org/10.5223/pghn.2023.26.3.135.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ortqvist AK, Lundholm C, Halfvarson J, et al. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut. 2019;68:218–25. https://doi.org/10.1136/gutjnl-2017-314352.

    Article  CAS  PubMed  Google Scholar 

  3. Alhasan MM, Cait AM, Heimesaat MM, et al. Antibiotic use during pregnancy increases offspring asthma severity in a dose-dependent manner. Allergy. 2020;75:1979–90. https://doi.org/10.1111/all.14234.

    Article  CAS  PubMed  Google Scholar 

  4. Miyoshi J, Bobe AM, Miyoshi S, et al. Peripartum antibiotics promote gut dysbiosis, loss of immune tolerance, and inflammatory bowel disease in genetically prone offspring. Cell Rep. 2017;20:491–504. https://doi.org/10.1016/j.celrep.2017.06.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyoshi J, Lee STM, Kennedy M, et al. Metagenomic alterations in gut microbiota precede and predict onset of colitis in the IL10 gene-deficient murine model. Cell Mol Gastroenterol Hepatol. 2021;11:491–502. https://doi.org/10.1016/j.jcmgh.2020.08.008.

    Article  CAS  PubMed  Google Scholar 

  6. Miyoshi J, Miyoshi S, Delmont TO, et al. Early-life microbial restitution reduces colitis risk promoted by antibiotic-induced gut dysbiosis in interleukin 10(-/-) mice. Gastroenterology. 2021;161:940-52 e15. https://doi.org/10.1053/j.gastro.2021.05.054.

    Article  CAS  PubMed  Google Scholar 

  7. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22:1079–89. https://doi.org/10.1038/nm.4185.

    Article  CAS  PubMed  Google Scholar 

  8. Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7:135. https://doi.org/10.1038/s41392-022-00974-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99. https://doi.org/10.1016/j.cell.2014.09.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8. https://doi.org/10.1126/science.1208344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  12. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7. https://doi.org/10.1038/nature11053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5:80. https://doi.org/10.1186/s40168-017-0296-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Afzaal M, Saeed F, Shah YA, et al. Human gut microbiota in health and disease: unveiling the relationship. Front Microbiol. 2022;13: 999001. https://doi.org/10.3389/fmicb.2022.999001.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tamburini S, Shen N, Wu HC, et al. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22:713–22. https://doi.org/10.1038/nm.4142.

    Article  CAS  PubMed  Google Scholar 

  16. Underwood MA, Mukhopadhyay S, Lakshminrusimha S, et al. Neonatal intestinal dysbiosis. J Perinatol. 2020;40:1597–608. https://doi.org/10.1038/s41372-020-00829-2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miyoshi J, Hisamatsu T. The impact of maternal exposure to antibiotics on the development of child gut microbiome. Immunol Med. 2022;45:63–8. https://doi.org/10.1080/25785826.2021.1963189.

    Article  CAS  PubMed  Google Scholar 

  18. Backhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703. https://doi.org/10.1016/j.chom.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  19. Ferretti P, Pasolli E, Tett A, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133-45 e5. https://doi.org/10.1016/j.chom.2018.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martinez I, Maldonado-Gomez MX, Gomes-Neto JC, et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. Elife. 2018. https://doi.org/10.7554/eLife.36521.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2018;15:197–205. https://doi.org/10.1038/nrgastro.2017.173.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Broe A, Pottegard A, Lamont RF, et al. Increasing use of antibiotics in pregnancy during the period 2000–2010: prevalence, timing, category, and demographics. BJOG. 2014;121:988–96. https://doi.org/10.1111/1471-0528.12806.

    Article  CAS  PubMed  Google Scholar 

  23. de Jonge L, Bos HJ, van Langen IM, et al. Antibiotics prescribed before, during and after pregnancy in the Netherlands: a drug utilization study. Pharmacoepidemiol Drug Saf. 2014;23:60–8. https://doi.org/10.1002/pds.3492.

    Article  CAS  PubMed  Google Scholar 

  24. Trinh NTH, Hjorth S, Nordeng HME. Use of interrupted time-series analysis to characterise antibiotic prescription fills across pregnancy: a Norwegian nationwide cohort study. BMJ Open. 2021;11: e050569. https://doi.org/10.1136/bmjopen-2021-050569.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tran A, Zureik M, Sibiude J, et al. Prevalence and associated factors of antibiotic exposure during pregnancy in a large French population-based study during the 2010–19 period. J Antimicrob Chemother. 2023;78:2535–43. https://doi.org/10.1093/jac/dkad266.

    Article  CAS  PubMed  Google Scholar 

  26. Okoshi K, Sakurai K, Yamamoto M, et al. Maternal antibiotic exposure and childhood allergies: the Japan environment and children’s Study. J Allergy Clin Immunol Glob. 2023;2: 100137. https://doi.org/10.1016/j.jacig.2023.100137.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nakitanda AO, Kieler H, Odsbu I, et al. In-utero antibiotic exposure and subsequent infections in infancy: a register-based cohort study with sibling analysis. Am J Obstet Gynecol MFM. 2023;5: 100860. https://doi.org/10.1016/j.ajogmf.2023.100860.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez de Tejada B. Antibiotic use and misuse during pregnancy and delivery: benefits and risks. Int J Environ Res Public Health. 2014;11:7993–8009. https://doi.org/10.3390/ijerph110807993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baltimore RS, Huie SM, Meek JI, et al. Early-onset neonatal sepsis in the era of group B streptococcal prevention. Pediatrics. 2001;108:1094–8. https://doi.org/10.1542/peds.108.5.1094.

    Article  CAS  PubMed  Google Scholar 

  30. Lyytikainen O, Nuorti JP, Halmesmaki E, et al. Invasive group B streptococcal infections in Finland: a population-based study. Emerg Infect Dis. 2003;9:469–73. https://doi.org/10.3201/eid0904.020481.

    Article  PubMed  Google Scholar 

  31. Heath PT, Balfour G, Weisner AM, et al. Group B streptococcal disease in UK and Irish infants younger than 90 days. Lancet. 2004;363:292–4. https://doi.org/10.1016/S0140-6736(03)15389-5.

    Article  PubMed  Google Scholar 

  32. Kenyon SL, Taylor DJ, Tarnow-Mordi W, et al. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group Lancet. 2001;357:979–88. https://doi.org/10.1016/s0140-6736(00)04233-1.

    Article  CAS  Google Scholar 

  33. Kenyon SL, Taylor DJ, Tarnow-Mordi W, et al. Broad-spectrum antibiotics for spontaneous preterm labour: the ORACLE II randomised trial. ORACLE Collaborative Group Lancet. 2001;357:989–94. https://doi.org/10.1016/s0140-6736(00)04234-3.

    Article  CAS  Google Scholar 

  34. Kenyon S, Pike K, Jones DR, et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-year follow-up of the ORACLE II trial. Lancet. 2008;372:1319–27. https://doi.org/10.1016/S0140-6736(08)61203-9.

    Article  CAS  PubMed  Google Scholar 

  35. Wampach L, Heintz-Buschart A, Fritz JV, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. 2018;9:5091. https://doi.org/10.1038/s41467-018-07631-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yassour M, Jason E, Hogstrom LJ, et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe. 2018;24(146–54): e4. https://doi.org/10.1016/j.chom.2018.06.007.

    Article  CAS  Google Scholar 

  37. Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237ra65. https://doi.org/10.1126/scitranslmed.3008599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ardissone AN, de la Cruz DM, Davis-Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9: e90784. https://doi.org/10.1371/journal.pone.0090784.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dong XD, Li XR, Luan JJ, et al. Bacterial communities in neonatal feces are similar to mothers’ placentae. Can J Infect Dis Med Microbiol. 2015;26:90–4. https://doi.org/10.1155/2015/737294.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hansen R, Scott KP, Khan S, et al. First-pass meconium samples from healthy term vaginally-delivered neonates: an analysis of the microbiota. PLoS One. 2015;10: e0133320. https://doi.org/10.1371/journal.pone.0133320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Collado MC, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. https://doi.org/10.1038/srep23129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seferovic MD, Pace RM, Carroll M, et al. Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol. 2019;221(146):e1–23. https://doi.org/10.1016/j.ajog.2019.04.036.

    Article  CAS  Google Scholar 

  43. He Q, Kwok LY, Xi X, et al. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Gut Microbes. 2020;12:1794266. https://doi.org/10.1080/19490976.2020.1794266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23:314–26. https://doi.org/10.1038/nm.4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shao Y, Forster SC, Tsaliki E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574:117–21. https://doi.org/10.1038/s41586-019-1560-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22:250–3. https://doi.org/10.1038/nm.4039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. https://doi.org/10.3402/mehd.v26.26050.

    Article  PubMed  Google Scholar 

  48. Azad MB, Konya T, Persaud RR, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016;123:983–93. https://doi.org/10.1111/1471-0528.13601.

    Article  CAS  PubMed  Google Scholar 

  49. Coker MO, Hoen AG, Dade E, et al. Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota: a prospective cohort study. BJOG. 2020;127:217–27. https://doi.org/10.1111/1471-0528.15799.

    Article  CAS  PubMed  Google Scholar 

  50. Nogacka A, Salazar N, Suarez M, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017;5:93. https://doi.org/10.1186/s40168-017-0313-3.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dierikx TH, Visser DH, Benninga MA, et al. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: a systematic review. J Infect. 2020;81:190–204. https://doi.org/10.1016/j.jinf.2020.05.002.

    Article  CAS  PubMed  Google Scholar 

  52. Zimmermann P, Curtis N. Effect of intrapartum antibiotics on the intestinal microbiota of infants: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2020;105:201–8. https://doi.org/10.1136/archdischild-2018-316659.

    Article  PubMed  Google Scholar 

  53. Zhou P, Zhou Y, Liu B, et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. mSphere. 2020. https://doi.org/10.1128/mSphere.00984-19.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tisseyre M, Collier M, Beeker N, et al. In utero exposure to antibiotics and risk of serious infections in the first year of life. Drug Saf. 2024. https://doi.org/10.1007/s40264-024-01401-z.

    Article  PubMed  Google Scholar 

  55. Miller JE, Wu C, Pedersen LH, et al. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study. Int J Epidemiol. 2018;47:561–71. https://doi.org/10.1093/ije/dyx272.

    Article  PubMed  Google Scholar 

  56. Pedersen TM, Stokholm J, Thorsen J, et al. Antibiotics in pregnancy increase children’s risk of otitis media and ventilation tubes. J Pediatr. 2017;183(153–8): e1. https://doi.org/10.1016/j.jpeds.2016.12.046.

    Article  CAS  Google Scholar 

  57. Cunha A, Santos AC, Medronho RA, et al. Use of antibiotics during pregnancy is associated with infection in children at four years of age in Portugal. Acta Paediatr. 2021;110:1911–5. https://doi.org/10.1111/apa.15733.

    Article  PubMed  Google Scholar 

  58. Kronman MP, Zaoutis TE, Haynes K, et al. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012;130:e794-803. https://doi.org/10.1542/peds.2011-3886.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ungaro R, Bernstein CN, Gearry R, et al. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol. 2014;109:1728–38. https://doi.org/10.1038/ajg.2014.246.

    Article  CAS  PubMed  Google Scholar 

  60. Mor A, Antonsen S, Kahlert J, et al. Prenatal exposure to systemic antibacterials and overweight and obesity in Danish schoolchildren: a prevalence study. Int J Obes (Lond). 2015;39:1450–5. https://doi.org/10.1038/ijo.2015.129.

    Article  CAS  PubMed  Google Scholar 

  61. Mueller NT, Whyatt R, Hoepner L, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes (Lond). 2015;39:665–70. https://doi.org/10.1038/ijo.2014.180.

    Article  CAS  PubMed  Google Scholar 

  62. Cassidy-Bushrow AE, Burmeister C, Havstad S, et al. Prenatal antimicrobial use and early-childhood body mass index. Int J Obes (Lond). 2018;42:1–7. https://doi.org/10.1038/ijo.2017.205.

    Article  CAS  PubMed  Google Scholar 

  63. Wang B, Liu J, Zhang Y, et al. Prenatal exposure to antibiotics and risk of childhood obesity in a multicenter cohort study. Am J Epidemiol. 2018;187:2159–67. https://doi.org/10.1093/aje/kwy122.

    Article  PubMed  Google Scholar 

  64. Poulsen MN, Pollak J, Bailey-Davis L, et al. Associations of prenatal and childhood antibiotic use with child body mass index at age 3 years. Obesity (Silver Spring). 2017;25:438–44. https://doi.org/10.1002/oby.21719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jess T, Morgen CS, Harpsoe MC, et al. Antibiotic use during pregnancy and childhood overweight: a population-based nationwide cohort study. Sci Rep. 2019;9:11528. https://doi.org/10.1038/s41598-019-48065-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baron R, Taye M, Besseling-van der Vaart I, et al. The relationship of prenatal and infant antibiotic exposure with childhood overweight and obesity: a systematic review. J Dev Orig Health Dis. 2020;11:335–49. https://doi.org/10.1017/S2040174419000722.

    Article  PubMed  Google Scholar 

  67. Stensballe LG, Simonsen J, Jensen SM, et al. Use of antibiotics during pregnancy increases the risk of asthma in early childhood. J Pediatr. 2013;162(832–8): e3. https://doi.org/10.1016/j.jpeds.2012.09.049.

    Article  CAS  Google Scholar 

  68. Baron R, Taye M, der Vaart IB, et al. The relationship of prenatal antibiotic exposure and infant antibiotic administration with childhood allergies: a systematic review. BMC Pediatr. 2020;20:312. https://doi.org/10.1186/s12887-020-02042-8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cait A, Wedel A, Arntz JL, et al. Prenatal antibiotic exposure, asthma, and the atopic march: a systematic review and meta-analysis. Allergy. 2022;77:3233–48. https://doi.org/10.1111/all.15404.

    Article  PubMed  Google Scholar 

  70. Turi KN, Gebretsadik T, Ding T, et al. Dose, timing, and spectrum of prenatal antibiotic exposure and risk of childhood asthma. Clin Infect Dis. 2021;72:455–62. https://doi.org/10.1093/cid/ciaa085.

    Article  PubMed  Google Scholar 

  71. Metzler S, Frei R, Schmausser-Hechfellner E, et al. Association between antibiotic treatment during pregnancy and infancy and the development of allergic diseases. Pediatr Allergy Immunol. 2019;30:423–33. https://doi.org/10.1111/pai.13039.

    Article  PubMed  Google Scholar 

  72. Zhong Y, Zhang Y, Wang Y, et al. Maternal antibiotic exposure during pregnancy and the risk of allergic diseases in childhood: a meta-analysis. Pediatr Allergy Immunol. 2021;32:445–56. https://doi.org/10.1111/pai.13411.

    Article  CAS  PubMed  Google Scholar 

  73. Wohl DL, Curry WJ, Mauger D, et al. Intrapartum antibiotics and childhood atopic dermatitis. J Am Board Fam Med. 2015;28:82–9. https://doi.org/10.3122/jabfm.2015.01.140017.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Timm S, Schlunssen V, Olsen J, et al. Prenatal antibiotics and atopic dermatitis among 18-month-old children in the Danish national birth cohort. Clin Exp Allergy. 2017;47:929–36. https://doi.org/10.1111/cea.12916.

    Article  CAS  PubMed  Google Scholar 

  75. Hamad AF, Alessi-Severini S, Mahmud SM, et al. Prenatal antibiotics exposure and the risk of autism spectrum disorders: a population-based cohort study. PLoS One. 2019;14: e0221921. https://doi.org/10.1371/journal.pone.0221921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nitschke AS, do Valle HA, Vallance BA, et al. Association between prenatal antibiotic exposure and autism spectrum disorder among term births: a population-based cohort study. Paediatr Perinat Epidemiol. 2023;37:516–26. https://doi.org/10.1111/ppe.12972.

    Article  PubMed  Google Scholar 

  77. Lin YC, Lin CH, Lin MC. The association of prenatal antibiotic use with attention deficit and autism spectrum disorders: a nationwide cohort study. Children (Basel). 2023. https://doi.org/10.3390/children10071128.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lisa Oberding, MSc, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Miyoshi.

Ethics declarations

Conflict of interest

Jun Miyoshi has received grant support from AbbVie GK; and received consulting and lecture fees from EA Pharma Co., Ltd., AbbVie GK, Janssen Pharmaceutical K.K., Jansen Asia Pacific Pte. Ltd., Pfizer Inc., Mitsubishi Tanabe Pharma Corporation, JIMRO Co., Miyarisan Co., Ltd., and Takeda Pharmaceutical Co., Ltd. Tadakazu Hisamatsu has performed Joint Research with Alfresa Pharma Co., Ltd., and EA Pharma Co., Ltd.; received grant support from AbbVie GK, Boston Scientific Corp., EA Pharma Co., Ltd., JIMRO Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Mochida Pharmaceutical Co., Ltd., Nippon Kayaku Co., Ltd., Pfizer Inc., and Takeda Pharmaceutical Co., Ltd., and received consulting and lecture fees from AbbVie GK, EA Pharma Co., Ltd., Janssen Research & Development, LLC., Gilead Sciences Inc., Eli Lilly and Co., Bristol Myers Squibb, Mitsubishi Tanabe Pharma Corporation, Takeda Pharmaceutical Co., Ltd., Mochida Pharmaceutical Co., Ltd., and Kissei Pharmaceutical Co., Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyoshi, J., Hisamatsu, T. Effect of maternal exposure to antibiotics during pregnancy on the neonatal intestinal microbiome and health. Clin J Gastroenterol 18, 1–10 (2025). https://doi.org/10.1007/s12328-024-02088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12328-024-02088-6

Keywords