Skip to main content

Advertisement

Log in

Diet, Microbes, and Cancer Across the Tree of Life: a Systematic Review

  • Cancer (RA Murphy, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cancers are a leading cause of death in humans and for many other species. Diet has often been associated with cancers, and the microbiome is an essential mediator between diet and cancers. Here, we review the work on cancer and the microbiome across species to search for broad patterns of susceptibility associated with different microbial species.

Recent Findings

Some microbes, such as Helicobacter bacteria, papillomaviruses, and the carnivore-associated Fusobacteria, consistently induce tumorigenesis in humans and other species. Other microbes, such as the milk-associated Lactobacillus, consistently inhibit tumorigenesis in humans and other species.

Summary

We systematically reviewed over a thousand published articles and identified links between diet, microbes, and cancers in several species of mammals, birds, and flies. Future work should examine a larger variety of host species to discover new model organisms for human preclinical trials, to better understand the observed variance in cancer prevalence across species, and to discover which microbes and diets are associated with cancers across species. Ultimately, this could help identify microbial and dietary interventions to diagnose, prevent, and treat cancers in humans as well as other animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

We provide all data in the supplementary table.

Disclaimer

The findings, opinions, and recommendations expressed here are those of the authors and not necessarily those of the universities where the research was performed or the National Institutes of Health.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Davies PCW, Lineweaver CH. Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Phys Biol. IOP Publishing; 2011;8:15001.

  2. Effron M, Griner L, Benirschke K. Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy 1. 1977. Available from: https://academic.oup.com/jnci/article/59/1/185/888218.

  3. Madsen T, Arnal A, Vittecoq M, Bernex F, Abadie J, Labrut S, et al. Chapter 2 - Cancer prevalence and etiology in wild and captive animals. In: Ujvari B, Roche B, Thomas F, editors., et al., Ecology and Evolution of Cancer. Academic Press; 2017. p. 11–46.

    Chapter  Google Scholar 

  4. Taneja V. Chapter 39 - Microbiome: impact of gender on function & characteristics of gut microbiome. In: Legato MJ, editor. Principles of Gender-Specific Medicine. 3rd ed. San Diego: Academic Press; 2017. p. 569–83.

    Chapter  Google Scholar 

  5. Neuman H, Koren O. The gut microbiome. Elsevier; 2016.

  6. Bull MJ, Plummer NT. Part 1: the human gut microbiome in health and disease. Integr Med. 2014;13:17–22.

    Google Scholar 

  7. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14: e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.

    Article  CAS  PubMed  Google Scholar 

  9. Kashyap S, Pal S, Chandan G, Saini V, Chakrabarti S, Saini NK, et al. Understanding the cross-talk between human microbiota and gastrointestinal cancer for developing potential diagnostic and prognostic biomarkers. Semin Cancer Biol. 2021; Available from: https://www.sciencedirect.com/science/article/pii/S1044579X21001218.

  10. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95:6578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K, Dinsdale EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol. 2019;4:1727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Russo E, Bacci G, Chiellini C, Fagorzi C, Niccolai E, Taddei A, et al. Preliminary comparison of oral and intestinal human microbiota in patients with colorectal cancer: a pilot study. Front Microbiol. 2017;8:2699.

    Article  PubMed  Google Scholar 

  13. Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22:501–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wieczorska K, Stolarek M, Stec R. The role of the gut microbiome in colorectal cancer: where are we? Where are we going? Clin Colorectal Cancer. 2020;19:5–12.

    Article  PubMed  Google Scholar 

  15. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20.

    Article  PubMed  CAS  Google Scholar 

  17. Peto J. Cancer epidemiology in the last century and the next decade. Nature. 2001;411:390–5.

    Article  CAS  PubMed  Google Scholar 

  18. Working I. Group on the evaluation of carcinogenic risks to humans. Biological agents. Volume 100 B. A review of human carcinogens. World Health Organization, Int Agency Res Cancer. 2012;94:1–441.

  19. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol Nature Publishing Group. 2012;10:575–82.

    Article  CAS  Google Scholar 

  20. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.

    Article  CAS  PubMed  Google Scholar 

  21. Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018. Available from: https://doi.org/10.1186/s40168-018-0451-2.

  22. Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 2017;23:2061–70.

    Article  CAS  PubMed  Google Scholar 

  23. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut BMJ Publishing Group. 2016;65:1973–80.

    CAS  Google Scholar 

  25. Yamaoka Y, Suehiro Y, Hashimoto S, Hoshida T, Fujimoto M, Watanabe M, et al. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J Gastroenterol. 2018;517–24. Available from: https://doi.org/10.1007/s00535-017-1382-6.

  26. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70–8.

    Article  CAS  PubMed  Google Scholar 

  27. Shmuely H, Passaro D, Figer A, Niv Y, Pitlik S, Samra Z, et al. Relationship between Helicobacter pylori CagA status and colorectal cancer. Am J Gastroenterol. 2001;96:3406–10.

    Article  CAS  PubMed  Google Scholar 

  28. Kwong TNY, Wang X, Nakatsu G, Chow TC, Tipoe T, Dai RZW, et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology. 2018;155:383-90.e8.

    Article  PubMed  Google Scholar 

  29. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20.

    PubMed  PubMed Central  Google Scholar 

  30. Wong SH, Kwong TNY, Wu C-Y, Yu J. Clinical applications of gut microbiota in cancer biology. Semin Cancer Biol. 2019;55:28–36.

    Article  CAS  PubMed  Google Scholar 

  31. Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Júnior U, Nakano V, Avila-Campos MJ. High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J Microbiol. 2015;46:1135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng Y, Luo Y, Lv Y, Huang C, Sheng Q, Zhao P, et al. Clostridium difficile colonization in preoperative colorectal cancer patients. Oncotarget. 2017;8:11877–86.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66:462–70.

    Article  CAS  PubMed  Google Scholar 

  35. Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE. 2012;7: e39743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE. 2011;6: e16393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019;93–106. Available from: https://doi.org/10.1016/j.mam.2019.05.001.

  38. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol Elsevier. 2012;13:607–15.

    Article  Google Scholar 

  39. Rea D, Coppola G, Palma G, Barbieri A, Luciano A, Del Prete P, et al. Microbiota effects on cancer: from risks to therapies. Oncotarget. ncbi.nlm.nih.gov; 2018;9:17915–27.

  40. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. Am Assoc Adv Sci. 2011;332:1496–501.

  41. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. Am Assoc Adv Sci. 2011;334:105–8.

  42. Rothe M, Blaut M. Evolution of the gut microbiota and the influence of diet. Benef Microbes. 2013;4:31–7.

    Article  CAS  PubMed  Google Scholar 

  43. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature Nature Publishing Group. 2014;505:559–63.

    CAS  Google Scholar 

  44. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22:458–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging. 2018;4:267–85.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS ONE. 2008;3: e3064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.

    Article  CAS  PubMed  Google Scholar 

  50. Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, et al. The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe. 2016;19:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome–brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci. Royal Society. 2016;371:20150122.

  53. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. Am Assoc Adv Sci. 2017;357:802–6.

  54. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.

    Article  CAS  PubMed  Google Scholar 

  55. Amato KR, Van Belle S, Di Fiore A, Estrada A, Stumpf R, White B, et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb Ecol. 2017;74:250–8.

    Article  PubMed  Google Scholar 

  56. Tung J, Barreiro LB, Burns MB, Grenier J-C, Lynch J, Grieneisen LE, et al. Social networks predict gut microbiome composition in wild baboons. Elife. 2015;4. Available from: https://doi.org/10.7554/eLife.05224.

  57. Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv. 2016;2: e1500997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lehtimäki J, Karkman A, Laatikainen T, Paalanen L, von Hertzen L, Haahtela T, et al. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Sci Rep. 2017;7:45651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ottman N, Ruokolainen L, Suomalainen A, Sinkko H, Karisola P, Lehtimäki J, et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J Allergy Clin Immunol. 2019;143:1198-1206.e12.

    Article  CAS  PubMed  Google Scholar 

  60. Grieneisen LE, Charpentier MJE, Alberts SC, Blekhman R, Bradburd G, Tung J, et al. Genes, geology and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc Biol Sci. 2019;286:20190431.

    PubMed  PubMed Central  Google Scholar 

  61. Carmody RN, Gerber GK, Luevano JM Jr, Gatti DM, Somes L, Svenson KL, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.

    Article  CAS  PubMed  Google Scholar 

  62. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A. 2010;107:18933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. Springer Science and Business Media LLC; 2021;27:321–32.

  64. Whisner CM, Aktipis AC. The role of the microbiome in cancer initiation and progression: how microbes and cancer cells utilize excess energy and promote one another’s growth. Curr Nutr Rep. Curr Sci Inc. 2019;42–51. Available from: https://doi.org/10.1007/s13668-019-0257-2.

  65. Sobhani I, Amiot A, Le Baleur Y, Levy M, Auriault M-L, Van Nhieu JT, et al. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Therap Adv Gastroenterol. 2013;6:215–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science. Am Assoc Adv Sci (AAAS). 2021;371:eabc4552.

  67. Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol. 2015;45:17–31.

    Article  CAS  PubMed  Google Scholar 

  68. O’Keefe SJ, Kidd M, Espitalier-Noel G, Owira P. Rarity of colon cancer in Africans is associated with low animal product consumption, not fiber. Am J Gastroenterol. 1999;94:1373–80.

    Article  PubMed  Google Scholar 

  69. Makarem N, Lin Y, Bandera EV, Jacques PF, Parekh N. Concordance with World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines for cancer prevention and obesity-related cancer risk in the Framingham Offspring cohort (1991–2008). Cancer Causes Control Springer. 2015;26:277–86.

    Article  Google Scholar 

  70. Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr. Taylor & Francis. 2012;31:206–38.

  71. Abdull Razis AF, Noor NM. Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev. 2013;14:1565–70.

    Article  PubMed  Google Scholar 

  72. Michels KB, Willett WC, Vaidya R, Zhang X, Giovannucci E. Yogurt consumption and colorectal cancer incidence and mortality in the nurses’ health study and the health professionals follow-up study. Am J Clin Nutr. 2020;1566–75. Available from: https://doi.org/10.1093/ajcn/nqaa244.

  73. Rodríguez-García C, Sánchez-Quesada C, Algarra I, Gaforio JJ. The high-fat diet based on extra-virgin olive oil causes dysbiosis linked to colorectal cancer prevention. Nutrients. 2020;12. Available from: https://doi.org/10.3390/nu12061705.

  74. Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 2010;70:2406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oostindjer M, Alexander J, Amdam GV, Andersen G, Bryan NS, Chen D, et al. The role of red and processed meat in colorectal cancer development: a perspective. Meat Sci. 2014;97:583–96.

    Article  PubMed  Google Scholar 

  76. Huang P, Liu Y. A reasonable diet promotes balance of intestinal microbiota: prevention of precolorectal cancer. Biomed Res Int. 2019;2019:3405278.

    PubMed  PubMed Central  Google Scholar 

  77. Abu-Ghazaleh N, Chua WJ, Gopalan V. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol Wiley. 2021;36:75–88.

    Article  CAS  Google Scholar 

  78. Foegeding NJ, Jones ZS, Byndloss MX. Western lifestyle as a driver of dysbiosis in colorectal cancer. Dis Model Mech. 2021;14. Available from: https://doi.org/10.1242/dmm.049051.

  79. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A. 2013;110:3229–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kho ZY, Lal SK. The human gut microbiome - a potential controller of wellness and disease. Front Microbiol. 2018;9:1835.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.

    Article  CAS  PubMed  Google Scholar 

  82. Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora Gut. 1998;42:2–7.

    CAS  PubMed  Google Scholar 

  83. Zhu Y, Michelle Luo T, Jobin C, Young HA. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 2011;309:119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. •• Chattopadhyay I, Dhar R, Pethusamy K, Seethy A, Srivastava T, Sah R, et al. Exploring the role of gut microbiome in colon cancer. Appl Biochem Biotechnol. Springer Science and Business Media LLC. 2021. Available from: https://doi.org/10.1007/s12010-021-03498-9. Τhis study extensively reviews the links between diet, gut microbes, and colorectal cancer mostly in humans.

  85. Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 2019;6:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lee N-K, Son S-H, Jeon EB, Jung GH, Lee J-Y, Paik H-D. The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J Funct Foods. 2015;14:513–8.

    Article  CAS  Google Scholar 

  87. Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, Im E. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer. 2010;127:780–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jan G, Belzacq A-S, Haouzi D, Rouault A, Métivier D, Kroemer G, et al. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ. 2002;9:179–88.

    Article  CAS  PubMed  Google Scholar 

  89. Rossi O, van Berkel LA, Chain F, Tanweer Khan M, Taverne N, Sokol H, et al. Faecalibacterium prausnitzii A2–165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep. 2016;6:18507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kahleova H, Rembert E, Alwarith J, Yonas WN, Tura A, Holubkov R, et al. Effects of a low-fat vegan diet on gut microbiota in overweight individuals and relationships with body weight, body composition, and insulin sensitivity. A randomized clinical trial. Nutrients. 2020;12. Available from: https://doi.org/10.3390/nu12102917.

  91. Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52:2141–6.

  92. Archer S, Meng S, Wu J, Johnson J, Tang R, Hodin R. Butyrate inhibits colon carcinoma cell growth through two distinct pathways. Surgery. 1998;124:248–53.

    Article  CAS  PubMed  Google Scholar 

  93. Li F, Hullar MAJ, Schwarz Y, Lampe JW. Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit-and vegetable-free diet. J Nutr Oxford University Press. 2009;139:1685–91.

    CAS  Google Scholar 

  94. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.

    Article  CAS  PubMed  Google Scholar 

  95. Crouch LI, Liberato MV, Urbanowicz PA, Baslé A, Lamb CA, Stewart CJ, et al. Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nat Commun. 2020;11:4017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45:931–43.

    Article  PubMed  CAS  Google Scholar 

  97. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lin C, Cai X, Zhang J, Wang W, Sheng Q, Hua H, et al. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion. 2019;100:72–8.

    Article  PubMed  Google Scholar 

  99. Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 2016;7:12365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16:690–704.

    Article  CAS  PubMed  Google Scholar 

  101. Moore WE, Moore LH. Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol. 1995;61:3202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Muletz Wolz CR, Yarwood SA, Campbell Grant EH, Fleischer RC, Lips KR. Effects of host species and environment on the skin microbiome of Plethodontid salamanders. J Anim Ecol. 2018;87:341–53.

    Article  PubMed  Google Scholar 

  103. Smith CCR, Snowberg LK, Gregory Caporaso J, Knight R, Bolnick DI. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 2015;9:2515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun. 2017;8:15973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. •• Xiao K, Fan Y, Zhang Z, Shen X, Li X, Liang X, et al. Covariation of the fecal microbiome with diet in nonpasserine birds. mSphere. 2021;6. Available from: https://doi.org/10.1128/mSphere.00308-21. The authors analyse the gut microbiome of 41 species of birds. They find that birds eating native starch have abundant Lactobacillus bacteria, whereas birds eating plant-derived fiber have abundant Costridium bacteria. Carnivorous birds have abundant Fusobacteria and Proteobacteria, whereas birds eating commercial corn-soybean diets have more Clostridia and Bacteroidia.

  106. Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, et al. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome. 2021;9:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reese AT, Chadaideh KS, Diggins CE, Beckel M, Callahan P, Ryan R, et al. Parallel signatures of mammalian domestication and human industrialization in the gut microbiota. bioRxiv. 2019. Available from: https://doi.org/10.1101/611483.

  108. Liu C, Hu J, Wu Y, Irwin DM, Chen W, Zhang Z, et al. Comparative study of gut microbiota from captive and confiscated-rescued wild pangolins. J Genet Genomics. 2021. Available from: https://www.sciencedirect.com/science/article/pii/S1673852721002198.

  109. Garrido V, Migura-García L, Gaitán I, Arrieta-Gisasola A, Martínez-Ballesteros I, Fraile L, et al. Prevalence of Salmonella in free-range pigs: risk factors and intestinal microbiota composition. Foods. 2021;10. Available from: https://doi.org/10.3390/foods10061410.

  110. Bueno de Mesquita CP, Nichols LM, Gebert MJ, Vanderburgh C, Bocksberger G, Lester JD, et al. Structure of chimpanzee gut microbiomes across tropical Africa. mSystems. 2021;6:e0126920.

  111. DeCandia AL, Cassidy KA, Stahler DR, Stahler EA, vonHoldt BM. Social environment and genetics underlie body site‐specific microbiomes of Yellowstone National Park gray wolves ( Canis lupus ). Ecol Evol. Wiley; 2021. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ece3.7767.

  112. Okamoto Y, Ichinohe N, Woo C, Han S-Y, Kim H-H, Ito S, et al. Contrasting gut microbiota in captive Eurasian otters (Lutra lutra) by age. Arch Microbiol. 2021. Available from: https://doi.org/10.1007/s00203-021-02526-w.

  113. Gibson KM, Nguyen BN, Neumann LM, Miller M, Buss P, Daniels S, et al. Gut microbiome differences between wild and captive black rhinoceros – implications for rhino health. Sci Rep. 2019. Available from: https://doi.org/10.1038/s41598-019-43875-3.

  114. Brice KL, Trivedi P, Jeffries TC, Blyton MDJ, Mitchell C, Singh BK, et al. The koala (Phascolarctos cinereus) faecal microbiome differs with diet in a wild population. PeerJ. 2019; p. e6534. Available from: https://doi.org/10.7717/peerj.6534.

  115. Cheng Y, Fox S, Pemberton D, Hogg C, Papenfuss AT, Belov K. The Tasmanian devil microbiome—implications for conservation and management. Microbiome. 2015;3:76.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Barraza-Guerrero SI, Meza-Herrera CA, García-De la Peña C, Ávila-Rodríguez V, Vaca-Paniagua F, Díaz-Velásquez CE, et al. Unveiling the fecal microbiota in two captive Mexican Wolf (Canis lupus baileyi) populations receiving different type of diets. Biology. mdpi.com; 2021;10. Available from: https://doi.org/10.3390/biology10070637.

  117. Ma ZS. Cross-scale analyses of animal and human gut microbiome assemblies from metacommunity to global landscape. mSystems. 2021;e0063321.

  118. Iorizzo M, Albanese G, Testa B, Ianiro M, Letizia F, Succi M, et al. Presence of lactic acid bacteria in the intestinal tract of the Mediterranean trout (Salmo macrostigma) in its natural environment. Life. 2021;11. Available from: https://doi.org/10.3390/life11070667.

  119. Toyoda A, Shionome N, Kohari D, Iida S, Masato H, Namae N, et al. Metabolic and Microbial characterizations for the gastrointestinal digesta of the zoo Colobus guereza. J Bacteriol Mycol. 2021;8. Available from: https://austinpublishinggroup.com/bacteriology/fulltext/bacteriology-v8-id1162.php.

  120. Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. Nature Publishing Group; 2019;10. Available from: https://doi.org/10.1038/s41467-019-10191-3.

  121. Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. FEMS Microbiology Letters. Oxford University Press; 2019. Available from: https://doi.org/10.1093/femsle/fnz117.

  122. Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol. internal-journal.frontiersin.org; 2015;6:673.

  123. Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol. 2012;21:3363–78.

    Article  PubMed  Google Scholar 

  124. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nelson TM, Rogers TL, Brown MV. The gut bacterial community of mammals from marine and terrestrial habitats. PLoS ONE. 2013;8: e83655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Levin D, Raab N, Pinto Y, Rothschild D, Zanir G, Godneva A, et al. Diversity and functional landscapes in the microbiota of animals in the wild. Science. 2021; Available from: https://doi.org/10.1126/science.abb5352.

  127. •• Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Res Square. 2021. Available from: https://www.researchsquare.com/article/rs-473663/latest.pdf. This work analysed the gut microbiome across 31 species of mammals, and found that carnivores have a more variable fecal microbiome between and within species, compared to herbivores.

  128. •• Milani C, Alessandri G, Mancabelli L, Mangifesta M, Lugli GA, Viappiani A, et al. Multi-omics approaches to decipher the impact of diet and host physiology on the mammalian gut microbiome. Appl Environ Microbiol. 2020;86. Available from: https://doi.org/10.1128/AEM.01864-20. This study is significantly related to our article as the authors identify the fecal microbiome of 77 species of wild and captive mammals, including herbivores, omnivores, and carnivores. The authors find functional coevolution between the hosts and the gut microbes, with diet affecting the composition and biodiversity of the gut microbiome.

  129. Deng P, Swanson KS. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br J Nutr. 2015;113(Suppl):S6-17.

    Article  CAS  PubMed  Google Scholar 

  130. Feskens EJM, Sluik D, van Woudenbergh GJ. Meat consumption, diabetes, and its complications. Curr Diab Rep Springer. 2013;13:298–306.

    Article  CAS  Google Scholar 

  131. Lombard LS, Witte EJ. Frequency and types of tumors in mammals and birds of the Philadelphia Zoological Garden. Cancer Res AACR. 1959;19:127–41.

    CAS  Google Scholar 

  132. Greenhalgh T, Peacock R. Effectiveness and efficiency of search methods in systematic reviews of complex evidence: audit of primary sources. BMJ. 2005;331:1064–5.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;195–206. Available from: https://doi.org/10.1016/j.chom.2013.07.012.

  134. Le Noci V, Guglielmetti S, Arioli S, Camisaschi C, Bianchi F, Sommariva M, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 2018;24:3528–38.

    Article  PubMed  CAS  Google Scholar 

  135. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. MBio. 2013;4:e00692-e713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Zhu Q, Jin Z, Wu W, Gao R, Guo B, Gao Z, et al. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS ONE. 2014;9: e90849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Han S-U, Kim Y-B, Joo H-J, Hahm K-B, Lee W-H, Cho Y-K, et al. Helicobacter pylori infection promotes gastric carcinogenesis in a mice model. J Gastroenterol Hepatol. 2002;17:253–61.

    Article  PubMed  Google Scholar 

  138. Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology. 1998;115:642–8.

    Article  CAS  PubMed  Google Scholar 

  139. Esteves MI, Schrenzel MD, Marini RP, Taylor NS, Xu S, Hagen S, et al. Helicobacter pylori gastritis in cats with long-term natural infection as a model of human disease. Am J Pathol. 2000;156:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thaiwong T, Sledge DG, Wise AG, Olstad K, Maes RK, Kiupel M. Malignant transformation of canine oral papillomavirus (CPV1)-associated papillomas in dogs: an emerging concern? Papillomavirus Res. 2018;6:83–9.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78:11451–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Cheng WT, Kantilal HK, Davamani F. The mechanism of bacteroides fragilis toxin contributes to colon cancer formation. Malays J Med Sci. 2020;27:9–21.

    PubMed  PubMed Central  Google Scholar 

  143. Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A. 2011;108:15354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gaines S, Williamson AJ, Hyman N, Kandel J. How the microbiome is shaping our understanding of cancer biology and its treatment. Semin Colon Rectal Surg. 2018;29:12–6.

    Article  Google Scholar 

  145. Tahara T, Hirata I, Nakano N, Tahara S, Horiguchi N, Kawamura T, et al. Potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in ulcerative colitis. Oncotarget. 2017;8:61917–26.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015;137:1258–68.

    Article  CAS  PubMed  Google Scholar 

  147. • Guo X, Lei H, Zhang K, Ke F, Song C. Diversification of animal gut microbes and NRPS gene clusters in some carnivores, herbivores and omnivores. Biotechnol Equip Taylor & Francis. 2020;34:1280–7. This study characterised the gut microbiome of 8 species of captive animals, and categorised these animals according to their diet. The authors found that gut microbiota are clustered differently in herbivores, omnivores, and carnivores.

  148. Wu S, Rhee K-J, Albesiano E, Rabizadeh S, Wu X, Yen H-R, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med Nature Publishing Group. 2009;15:1016–22.

    Article  CAS  Google Scholar 

  149. Lee YK, Mehrabian P, Boyajian S, Wu W-L, Selicha J, Vonderfecht S, et al. The protective role of Bacteroides fragilis in a murine model of colitis-associated colorectal cancer. mSphere. 2018. Available from: https://doi.org/10.1128/msphere.00587-18.

  150. Nakajima A, Sasaki T, Itoh K, Kitahara T, Takema Y, Hiramatsu K, et al. A soluble fiber diet increases Bacteroides fragilis group abundance and immunoglobulin A production in the gut. Appl Environ Microbiol. 2020;86. Available from: https://doi.org/10.1128/AEM.00405-20.

  151. Lertpiriyapong K, Whary MT, Muthupalani S, Lofgren JL, Gamazon ER, Feng Y, et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut. 2014;63:54–63.

    Article  CAS  PubMed  Google Scholar 

  152. Chen Z-F, Ai L-Y, Wang J-L, Ren L-L, Yu Y-N, Xu J, et al. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol. 2015;10:1433–45.

    Article  PubMed  CAS  Google Scholar 

  153. Li Y, Tinoco R, Elmén L, Segota I, Xian Y, Fujita Y, et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5-/- mice. Nat Commun Nature Publishing Group. 2019;10:1–16.

    Google Scholar 

  154. Sorenson BS, Banton KL, Augustin LB, Leonard AS, Saltzman DA. Antioxidant oils and Salmonella enterica Typhimurium reduce tumor in an experimental model of hepatic metastasis. Onco Targets Ther. 2011;4:59–69.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Maggio-Price L, Treuting P, Zeng W, Tsang M, Bielefeldt-Ohmann H, Iritani BM. Helicobacter infection is required for inflammation and colon cancer in SMAD3-deficient mice. Cancer Res. 2006;66:828–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tsoi H, Chu ESH, Zhang X, Sheng J, Nakatsu G, Ng SC, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology. 2017;152:1419-1433.e5.

    Article  PubMed  Google Scholar 

  157. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25:377–88.

    Article  CAS  PubMed  Google Scholar 

  158. Food and Agriculture Organization of the United Nations. Ultra-processed foods, diet quality and human health. Food Agri Org. 2019.

  159. Hattery AJ, Smith E. Health, nutrition, access to healthy food and well-being among African Americans. Handbook of African American Health. Springer. 2011. Available from: https://link.springer.com/chapter/10.1007/978-1-4419-9616-9_3.

  160. Ohlhorst SD, Russell R, Bier D, Klurfeld DM, Li Z, Mein JR, et al. Nutrition research to affect food and a healthy life span. J Nutr. academic.oup.com; 2013;143:1349–54.

  161. Vipperla K, O’Keefe SJ. Diet, microbiota, and dysbiosis: a “recipe” for colorectal cancer. Food Funct Royal Society of Chemistry (RSC). 2016;7:1731–40.

    Article  CAS  Google Scholar 

  162. Loke YL, Chew MT, Ngeow YF, Lim WWD, Peh SC. Colon carcinogenesis: the interplay between diet and gut microbiota. Front Cell Infect Microbiol. Frontiers Media SA. 2020;10:603086.

  163. Lee KA, Luong MK, Shaw H, Nathan P, Bataille V, Spector TD. The gut microbiome: what the oncologist ought to know. Br J Cancer. 2021. Available from: https://doi.org/10.1038/s41416-021-01467-x.

  164. Russo E, Nannini G, Dinu M, Pagliai G, Sofi F, Amedei A. Exploring the food-gut axis in immunotherapy response of cancer patients. World J Gastroenterol. 2020;26:4919–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Newman TM, Shively CA, Register TC, Appt SE, Yadav H, Colwell RR, et al. Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. Microbiome. 2021;9:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Payne AN, Chassard C, Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host–microbe interactions contributing to obesity. Obes Rev. Wiley Online Library. 2012. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-789X.2012.01009.xcasa_token=Yvy4J0lEYhgAAAAA:sSSoot0FYz6nNp3dclaVZWMCJsbh_kAbq9RCZaaa94QSuf5heJNGtHp8yli97qlj4jtaAdBqh73iZEU5.

  167. Segata N. Gut microbiome: westernization and the disappearance of intestinal diversity. Curr. Biol. 2015. p. R611–3.

  168. •• Boddy AM, Abegglen LM, Pessier AP, Schiffman JD, Maley CC, Witte C. Lifetime cancer prevalence and life history traits in mammals. Evol Med Pub Health. 2020. Available from: https://academic.oup.com/emph/advance-article/doi/10.1093/emph/eoaa015/5843791. This study presents cancer prevalence data of 37 mammals in captive environments and their association with life history variables. These cancer data are a useful first step towards identifying associations between cancer and diet-associated microbiomes in captive environments.

  169. Stearns SC. Trade-offs in life-history evolution. Funct Ecol. [British Ecological Society, Wiley]; 1989;3:259–68.

  170. Wu J, Yonezawa T, Kishino H. Evolution of reproductive life history in mammals and the associated change of functional constraints. Genes. 2021;12. Available from: https://doi.org/10.3390/genes12050740.

  171. Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2002;2:28–37.

    Article  CAS  PubMed  Google Scholar 

  172. Díaz P, Valenzuela Valderrama M, Bravo J, Quest AFG. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol. 2018;9:5.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Crabtree JE, Farmery SM. Helicobacter pylori and gastric mucosal cytokines: evidence that CagA-positive strains are more virulent. Lab Invest. 1995;742–5.

  174. Goodman B, Gardner H. The microbiome and cancer. J Pathol. 2018;244:667–76.

    Article  PubMed  Google Scholar 

  175. Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, et al. The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe. 2019;26:283-295.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kim M, Benayoun BA. The microbiome: an emerging key player in aging and longevity. Transl Med Aging. 2020;103–16. Available from: https://doi.org/10.1016/j.tma.2020.07.004.

  177. Martínez-Mota R, Kohl KD, Orr TJ, Denise DM. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J Nature Publishing Group. 2019;14:67–78.

    Google Scholar 

  178. Guo W, Mishra S, Wang C, Zhang H, Ning R, Kong F, et al. Comparative study of gut microbiota in wild and captive giant pandas (Ailuropoda melanoleuca). Genes. 2019;10. Available from: https://doi.org/10.3390/genes10100827.

  179. Nelson TM, Rogers TL, Carlini AR, Brown MV. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ Microbiol. 2013;1132–45. Available from: https://doi.org/10.1111/1462-2920.12022.

  180. Hale VL, Tan CL, Niu K, Yang Y, Zhang Q, Knight R, et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys, Rhinopithecus brelichi. Am J Primatol. Wiley. 2019;81:e22989.

  181. Long X, Wong CC, Tong L, Chu ESH, Ho Szeto C, Go MYY, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol. 2019;4:2319–30.

    Article  PubMed  CAS  Google Scholar 

  182. Beeckman DSA, Vanrompay DCG. Bacterial secretion systems with an emphasis on the chlamydial Type III secretion system. Curr Issues Mol Biol. mdpi.com; 2010;12:17–41.

  183. Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res AACR. 2006;4:9–14.

    Article  CAS  Google Scholar 

  184. Muyzer G, Stams AJM. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. nature.com; 2008;6:441–54.

  185. Dharmani P, Strauss J, Ambrose C, Allen-Vercoe E, Chadee K. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun. 2011;79:2597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Avilés-Jiménez F, Yu G, Torres-Poveda K, Madrid-Marina V, Torres J. On the search to elucidate the role of Microbiota in the genesis of cancer: the cases of gastrointestinal and cervical cancer. Arch Med Res. 2017;48:754–65.

    Article  PubMed  CAS  Google Scholar 

  187. Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal Elsevier. 2013;25:403–16.

    Article  CAS  Google Scholar 

  188. Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes Taylor & Francis. 2014;5:675–80.

    Article  Google Scholar 

  189. Aktipis CA, Maley CC, Pepper JW. Dispersal evolution in neoplasms: the role of disregulated metabolism in the evolution of cell motility. Cancer Prev Res. 2012;5:266–75.

    Article  Google Scholar 

  190. Carlos N, Tang Y-W, Pei Z. Pearls and pitfalls of genomics-based microbiome analysis. Emerg Microbes Infect. 2012;1: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A. Circadian rhythm and the gut microbiome. Int Rev Neurobiol. 2016;131:193–205.

    Article  CAS  PubMed  Google Scholar 

  192. Org E, Parks BW, Joo JWJ, Emert B, Schwartzman W, Kang EY, et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015;25:1558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol. 2017;15:127.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Janney A, Powrie F, Mann EH. Host–microbiota maladaptation in colorectal cancer. Nature Nature Publishing Group. 2020;585:509–17.

    CAS  Google Scholar 

  195. Raulo A, Allen BE, Troitsky T, Husby A, Firth JA, Coulson T, et al. Social networks strongly predict the gut microbiota of wild mice. ISME. Springer Science and Business Media LLC. 2021. Available from: https://doi.org/10.1038/s41396-021-00949-3.

  196. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  197. Hildebrand F, Nguyen TLA, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013;14:R4.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Leclaire S, Nielsen JF, Drea CM. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol. academic.oup.com; 2014. Available from: https://academic.oup.com/beheco/article-abstract/25/4/996/2900546.

  199. Theis KR, Schmidt TM, Holekamp KE. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep. 2012;2:615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Wikberg EC, Christie D, Sicotte P, Ting N. Interactions between social groups of colobus monkeys (Colobus vellerosus) explain similarities in their gut microbiomes. Anim Behav. 2020;163:17–31.

    Article  Google Scholar 

  201. Chubaty AM, Ma BO, Stein RW, Gillespie DR, Henry LM, Phelan C, et al. On the evolution of omnivory in a community context. Ecol Evol. 2014;251–65. Available from: https://doi.org/10.1002/ece3.923.

  202. Banks MS, Sprague WW, Schmoll J, Parnell JAQ, Love GD. Why do animal eyes have pupils of different shapes? Science Advances. Am Assoc Adv Sci. 2015;1. Available from: https://doi.org/10.1126/sciadv.1500391.

  203. Walls GL. The vertebrate eye and its adaptive radiation Hafner. New York. 1942;

  204. Brischoux F, Pizzatto L, Shine R. Insights into the adaptive significance of vertical pupil shape in snakes. J Evol Biol Wiley Online Library. 2010;23:1878–85.

    CAS  Google Scholar 

  205. Beasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR. The evolution of stomach acidity and its relevance to the human microbiome. PLoS ONE. 2015;10: e0134116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Hickman CP, Robert LS, Larson A. Integrated principal of zoology. New York: McGraw Hill Company; 2001.

    Google Scholar 

  207. Hotton N, Olson EC, Beerbower R. Amniote origins and the discovery of herbivory. Amniote origins. Academic Press San Diego. 1997;207–64.

  208. Sues H-D, Reisz RR. Origins and early evolution of herbivory in tetrapods. Trends Ecol Evol Elsevier. 1998;13:141–5.

    Article  CAS  Google Scholar 

  209. Modesto SP. The skull of the herbivorous synapsid Edaphosaurus boanerges from the Lower Permian of Texas. Palaeontology. London: Palaeontol Assoc. 1995;38:213.

  210. Stevens CE, Hume ID. Comparative physiology of the vertebrate digestive system. Cambridge Univ Press. 2004.

  211. Chivers DE. The digestive system in mammals: food form and function. Cambridge Univ Press. 1994.

  212. Schieck JO, Millar JS. Alimentary tract measurements as indicators of diets of small mammals. Mammalia. Walter de Gruyter, Berlin/New York. 1985;49:93–104.

  213. Zhang K, Dai H, Liang W, Zhang L, Deng Z. Fermented dairy foods intake and risk of cancer. Int J Cancer. 2019;144:2099–108.

    Article  CAS  PubMed  Google Scholar 

  214. Chakrabarty AM. Microorganisms and cancer: quest for a therapy. J Bacteriol American Society for Microbiology. 2003;185:2683–6.

    Article  CAS  Google Scholar 

  215. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125:1401–12.

    Article  CAS  PubMed  Google Scholar 

  216. Reid G, Sanders ME, Gaskins HR, Gibson GR, Mercenier A, Rastall R, et al. New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol. journals.lww.com; 2003;37:105–18.

  217. Rangarajan A, Weinberg RA. Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer. 2003;3:952–9.

    Article  CAS  PubMed  Google Scholar 

  218. Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA. 2015;314:1850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Baxter NT, Zackular JP, Chen GY, Schloss PD. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome. 2014;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Benito I, Encío IJ, Milagro FI, Alfaro M, Martínez-Peñuela A, Barajas M, et al. Microencapsulated Bifidobacterium bifidum and Lactobacillus gasseri in combination with quercetin inhibit colorectal cancer development in ApcMin/+ mice. Int J Mol Sci. 2021;22. Available from: https://doi.org/10.3390/ijms22094906.

  221. Yazdi MH, Soltan Dallal MM, Hassan ZM, Holakuyee M, Agha Amiri S, Abolhassani M, et al. Oral administration of Lactobacillus acidophilus induces IL-12 production in spleen cell culture of BALB/c mice bearing transplanted breast tumour. Br J Nutr. 2010;104:227–32.

    Article  CAS  PubMed  Google Scholar 

  222. Yazdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR. Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. Daru. 2013;21:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. • Chou Y-C, Ho P-Y, Chen W-J, Wu S-H, Pan M-H. Lactobacillus fermentum V3 ameliorates colitis-associated tumorigenesis by modulating the gut microbiome. Am J Cancer Res. 2020;10:1170–81. This study highlights the role of a probiotic, Lactobacillus fermentum, in changing the composition of the mouse gut microbiome and inhibiting tumour formation in the colon. Therefore, Lactobacillus fermentum, has great potential as a biotherapeutic agent.

  224. de Moreno de LeBlanc A, Matar C, LeBlanc N, Perdigón G. Effects of milk fermented by Lactobacillus helveticusR389 on a murine breast cancer model. Breast Cancer Res. 2005. Available from: https://doi.org/10.1186/bcr1032.

  225. Yazdi MH, Mahdavi M, Kheradmand E, Shahverdi AR. The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice. Arzneimittelforschung. 2012;62:525–31.

    Article  CAS  PubMed  Google Scholar 

  226. Kassayova M, Bobrov N, Strojn\`y L, Kiskova T, Mikeš J, Demečková V, et al. Preventive effects of probiotic bacteria Lactobacillus plantarum and dietary fiber in chemically-induced mammary carcinogenesis. Anticancer Res. Int Inst Anticancer Res. 2014;34:4969–75.

  227. Lim B-K, Mahendran R, Lee Y-K, Bay B-H. Chemopreventive effect of Lactobacillus rhamnosus on growth of a subcutaneously implanted bladder cancer cell line in the mouse. Jpn J Cancer Res. 2002;93:36–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gamallat Y, Meyiah A, Kuugbee ED, Hago AM, Chiwala G, Awadasseid A, et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother. 2016;83:536–41.

    Article  CAS  PubMed  Google Scholar 

  229. Zamberi NR, Abu N, Mohamed NE, Nordin N, Keong YS, Beh BK, et al. The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells. Integr Cancer Ther. 2016;15:NP53–66.

  230. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol. 2002;160:2253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hailey JR, Haseman JK, Bucher JR, Radovsky E, Malarkey DE, Miller RT, et al. Impact of Helicobacter hepaticus infection in B6C3F1 mice from twelve national toxicology program two-year carcinogenesis studies. Toxicol Pathol. 1998;602–11. Available from: https://doi.org/10.1177/019262339802600503.

  232. Sanders FK. Experimental carcinogenesis: induction of multiple tumors by viruses. Cancer. 1977;40:1841–4.

    Article  CAS  PubMed  Google Scholar 

  233. Apidianakis Y, Pitsouli C, Perrimon N, Rahme L. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A. 2009;106:20883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Erichsen S, Harboe A. Toxoplasmosis in chickens. Acta Pathol Microbiol Scand Wiley. 2009;33:381–6.

    Article  Google Scholar 

  235. Kapsetaki SE, Alcaraz GM, Maley CC, Whisner CM, Aktipis A. Diet, microbes, and cancer across the tree of life: a systematic review. Research Square. 2021. Available from: https://www.researchsquare.com/article/rs-1077771/latest.pdf.

Download references

Acknowledgements

The authors wish to declare that a preprint of this article is available on Research Square [235].

Funding

This work was supported in part by NIH grants U54 CA217376, U2C CA233254, P01 CA91955, and R01 CA140657 as well as CDMRP Breast Cancer Research Program Award BC132057 and the Arizona Biomedical Research Commission grant ADHS18-198847.

Author information

Authors and Affiliations

Authors

Contributions

A.A. conceived the idea for this review. S.E.K. and G.M.A designed, structured, and gathered the data for the systematic review and wrote the first draft. C.C.M., C.M.W., and A.A. provided guidance during the project. All authors discussed and contributed to the final versions of the manuscript.

Corresponding author

Correspondence to Stefania E. Kapsetaki.

Ethics declarations

Consent for Publication

All authors have given their consent for publication.

Competing Interests

We declare we have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Cancer

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapsetaki, S.E., Marquez Alcaraz, G., Maley, C.C. et al. Diet, Microbes, and Cancer Across the Tree of Life: a Systematic Review. Curr Nutr Rep 11, 508–525 (2022). https://doi.org/10.1007/s13668-022-00420-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-022-00420-5

Keywords

Profiles

  1. Stefania E. Kapsetaki