Skip to main content

Advertisement

Log in

A Comprehensive Review of Dust Events: Characteristics, Climate Feedbacks, and Public Health Risks

  • REVIEW
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Dust events are global meteorological disasters, affecting approximately 330 million people across 151 countries, from sub-Saharan Africa to northern China and Australia, with profound impacts on ecosystems, human health, and socioeconomics. The WMO airborne dust bulletin 2023 indicates that, dust concentrations in the most severely affected regions worldwide exceeded long-term averages, causing significant impacts on the global environment, economy, and public health.

Recent Findings

In recent years, as climate change has led to an increasing frequency and intensity of extreme weather events, research on the interactions between dust aerosols and the climate system, as well as their impacts on human health, has gradually become a hot topic. Studies have revealed the critical role of direct radiative feedback from East Asian dust in exacerbating dust-related air pollution in northern China. Other research highlights the combined effects of Arctic Sea ice anomalies, La Niña events, and a warmer northwestern Atlantic in creating loose, dry surface conditions across Mongolia, along with the formation of the strongest Mongolian cyclone in the past decade, which provided favorable dynamical disturbances and transport conditions for dust events. Furthermore, dust events have been shown to significantly increase the mortality risk from respiratory diseases, particularly chronic lower respiratory diseases and chronic obstructive pulmonary disease (COPD). Circulatory disease mortality risks, including ischemic stroke and hypertensive heart disease, have also risen. These findings underscore the importance of further exploring the interactions between dust aerosols and regional climate, as well as their multidimensional impacts on human health.

Summary

Dust events, as a global arid meteorological disaster, affect vast regions worldwide. In China, the severe spring dust storm of 2021 caused significant adverse impacts and economic losses across many northern cities. To enhance global awareness of dust events, strengthen international cooperation, and mitigate their impacts, the United Nations (UN) has designated 2025–2034 as the "UN Decade for Combating Sand and Dust Storms". Implementing effective dust control policies, building climate-resilient health systems, and enhancing efforts in risk mitigation, prevention, response, and recovery can significantly reduce health risks. This review aims to summarize recent advances in research on the impacts of dust on climate and human health. It contributes to expanding our understanding of the climatic effects of dust aerosols and provides crucial scientific evidence for addressing climate change and developing strategies to mitigate health risks associated with dust exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Huang M, Peng G, Zhang J, et al. Application of artificial neural networks to the prediction of dust storms in Northwest China. Global Planet Change. 2006;52(1):216–24.

    Article  Google Scholar 

  2. Shi G, Wang B, Zhang H, et al. Chinese Journal of Atmospheric Sciences (in Chinese). Chinese J Atmos Sci. 2008;04:826–40.

    Google Scholar 

  3. Zhu Q, Liu Y, Shao T, et al. Transport of Asian aerosols to the Pacific Ocean. Atmos Res. 2020;234:104735.

    Article  Google Scholar 

  4. Huneeus N, Schulz M, Balkanski Y, et al. Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys. 2011;11(15):7781–816.

    Article  CAS  Google Scholar 

  5. Zhao A, Ryder CL, Wilcox LJ. How well do the CMIP6 models simulate dust aerosols? Atmos Chem Phys. 2022;22(3):2095–119.

    Article  CAS  Google Scholar 

  6. Chen S, Jiang N, Huang J, et al. Estimations of indirect and direct anthropogenic dust emission at the global scale. Atmos Environ. 2019;200:50–60.

    Article  CAS  Google Scholar 

  7. Huang JP, Liu JJ, Chen B, et al. Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos Chem Phys. 2015;15(20):11653–65.

    Article  CAS  Google Scholar 

  8. Chen S, Chen J, Zhang Y, et al. Anthropogenic dust: sources, characteristics and emissions. Environ Res Lett. 2023;18(10):103002.

    Article  Google Scholar 

  9. Andreae MO. Chapter 10 - Climatic effects of changing atmospheric aerosol levels. In: Henderson-Sellers, A. (Ed.) World survey of climatology. 1995;16:347–98

  10. IPCC. The Physical Science Basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Computational Geometry, 2013.

  11. Zender CS, Miller RLRL, Tegen I. Quantifying mineral dust mass budgets:Terminology, constraints, and current estimates. EOS Trans Am Geophys Union. 2004;85(48):509–12.

    Article  Google Scholar 

  12. Textor C, Schulz M, Guibert S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys. 2006;6(7):1777–813.

    Article  CAS  Google Scholar 

  13. Zhang P, Wang C, Chen L, et al. Current Status of Satellite-Based Dust Aerosol Remote Sensing and Some Issues to Be Concerned (in Chinese). Meteorol Monthly. 2018;44(06):725–36.

    Google Scholar 

  14. Liu J, Zheng Y, Li Z, et al. Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmos Environ. 2011;45(35):6469–80.

    Article  CAS  Google Scholar 

  15. Tao M, Chen L, Su L et al. Satellite observation of regional haze pollution over the North China Plain. J Geophys Res: Atmos. 2012;117:D12203.

  16. Zhou D, Ding K, Huang X, et al. Transport, mixing and feedback of dust, biomass burning and anthropogenic pollutants in eastern Asia: a case study. Atmos Chem Phys. 2018;18(22):16345–61.

    Article  CAS  Google Scholar 

  17. Zhen X, Kang Y, Yang X, et al. Statistical Analysis of Dust Weather Frequency in Taklamakan Desert (in Chinese). Environ Sci Manag. 2021;46(10):133–7.

    Google Scholar 

  18. Chen S, Huang J, Qian Y, et al. An overview of mineral dust modeling over East Asia. J Meteorol Res. 2017;31(4):633–53.

    Article  Google Scholar 

  19. Modarres R. Regional maximum wind speed frequency analysis for the arid and semi-arid regions of Iran. J Arid Environ. 2008;72(7):1329–42.

    Article  Google Scholar 

  20. Muhammad A, Sheltami TR, Mouftah HT. A review of techniques and technologies for sand and dust storm detection. Rev Environ Sci Bio/Technol. 2012;11(3):305–22.

    Article  Google Scholar 

  21. Hahnenberger M, Nicoll K. Meteorological characteristics of dust storm events in the eastern Great Basin of Utah, U.S.A. Atmos Environ. 2012;60:601–12.

    Article  CAS  Google Scholar 

  22. Bellouin N, Boucher O, Haywood J, et al. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature. 2005;438(7071):1138–41.

    Article  CAS  Google Scholar 

  23. Song S-K, Shon Z-H, Park Y-H. Diurnal and seasonal characteristics of the optical properties and direct radiative forcing of different aerosol components in Seoul megacity. Sci Total Environ. 2017;599–600:400–12.

    Article  Google Scholar 

  24. Zheng S, Pozzer A, Cao CX, et al. Long-term (2001–2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing China. Atmos Chem Phys. 2015;15(10):5715–25.

    Article  CAS  Google Scholar 

  25. Tegen I, Fung I. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J Geophys Res: Atmos. 1994;99(D11):22897–914.

    Article  Google Scholar 

  26. Shao Y, Dong CH. A review on East Asian dust storm climate, modelling and monitoring. Global Planet Change. 2006;52(1):1–22.

    Article  Google Scholar 

  27. Wu C, Lin Z, Liu X, et al. Can Climate Models Reproduce the Decadal Change of Dust Aerosol in East Asia? Geophys Res Lett. 2018;45(18):9953–62.

    Article  Google Scholar 

  28. Feng J, Zhao C, Du Q, et al. Simulating Atmospheric Dust With a Global Variable-Resolution Model: Model Description and Impacts of Mesh Refinement. J Adv Model Earth Syst. 2023;15(10):e2023MS003636.

    Article  Google Scholar 

  29. Miller RL, Perlwitz J, Tegen I. Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. J Geophys Res Atmos. 2004;109:D24209.

  30. Schepanski K, Tegen I, Macke A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens Environ. 2012;123:90–7.

    Article  Google Scholar 

  31. Li Z, Guo J, Ding A, et al. Aerosol and boundary-layer interactions and impact on air quality. 2017;4(6):810–33.

    CAS  Google Scholar 

  32. Spyrou C, Kallos G, Mitsakou C, et al. Modeling the radiative effects of desert dust on weather and regional climate. Atmos Chem Phys. 2013;13(11):5489–504.

    Article  CAS  Google Scholar 

  33. García RD, García OE, Cuevas E, et al. Solar radiation measurements compared to simulations at the BSRN Izaña station. Mineral dust radiative forcing and efficiency study. J Geophys Res: Atmos. 2014;119(1):179–94.

    Article  Google Scholar 

  34. Stanelle T, Vogel B, Vogel H, et al. Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos Chem Phys. 2010;10(22):10771–88.

    Article  CAS  Google Scholar 

  35. Zhao C, Liu X, Ruby Leung L, et al. Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys. 2011;11(5):1879–93.

    Article  CAS  Google Scholar 

  36. Jickells TD, An ZS, Andersen KK, et al. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science. 2005;308(5718):67–71.

    Article  CAS  Google Scholar 

  37. Mahowald NM, Baker AR, Bergametti G, et al. Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles. 2005;19:GB4025.

  38. Han Y, Zhao T, Song L, et al. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean. Atmos Environ. 2011;45(25):4291–8.

    Article  CAS  Google Scholar 

  39. Kok JF, Ward DS, Mahowald NM, et al. Global and regional importance of the direct dust-climate feedback. Nat Commun. 2018;9(1):241.

    Article  Google Scholar 

  40. Wang N, Zhang L. Preliminary Summary on Radiative Properties and Observation Methods of Dust Aerosol (in Chinese). J Arid Meteorol. 2007;04:68–73+79.

    CAS  Google Scholar 

  41. Su X. New Advances of Dust Aerosol in China (in Chinese). Meteorol Environ Sci. 2008;03:72–7.

    Google Scholar 

  42. Chen S, Zhao C, Qian Y, et al. Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeol Res. 2014;15:15–30.

    Article  CAS  Google Scholar 

  43. Zhao C, Hu Z, Qian Y, et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements. Atmos Chem Phys. 2014;14(20):11475–91.

    Article  Google Scholar 

  44. Chen S, Zhang X, Lin J, et al. Fugitive Road Dust PM2.5 Emissions and Their Potential Health Impacts. Environ Sci Technol. 2019;53(14):8455–65.

    Article  CAS  Google Scholar 

  45. Aghababaeian H, Ostadtaghizadeh A, Ardalan A, et al. Global Health Impacts of Dust Storms: A Systematic Review. Environ Health Insights. 2021;15:11786302211018390.

    Article  Google Scholar 

  46. Aghababaeian H, Ostadtaghizadeh A, Ardalan A, et al. Effect of Dust Storms on Non-Accidental, Cardiovascular, and Respiratory Mortality: A Case of Dezful City in Iran. Environ Health Insights. 2021;15:11786302211060152.

    Article  Google Scholar 

  47. Vodonos A, Friger M, Katra I, et al. Individual Effect Modifiers of Dust Exposure Effect on Cardiovascular Morbidity. PLoS ONE. 2015;10(9):e0137714.

    Article  Google Scholar 

  48. Crooks JL, Cascio WE, Percy MS, et al. The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993–2005. Environ Health Perspect. 2016;124(11):1735–43.

    Article  Google Scholar 

  49. Ardon-Dryer K, Mock C, Reyes J, et al. The effect of dust storm particles on single human lung cancer cells. Environ Res. 2020;181:108891.

    Article  CAS  Google Scholar 

  50. Zhang C, Zhao D, Liu F, et al. Dust particulate matter increases pulmonary embolism onset: A nationwide time-stratified case-crossover study in China. Environ Int. 2024;186:108586.

    Article  CAS  Google Scholar 

  51. Li X, Tang MA, Xiao XB, et al. Research progress on the association between occupational dust and chronic obstructive pulmonary disease. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese J Tuber Respiratory Dis. 2024;47(10):984–90.

    CAS  Google Scholar 

  52. Meng Z, Lu B. Dust events as a risk factor for daily hospitalization for respiratory and cardiovascular diseases in Minqin China. Atmos Environ. 2007;41(33):7048–58.

    Article  CAS  Google Scholar 

  53. Kim J-S, Park K. Atmospheric Aging of Asian Dust Particles During Long Range Transport. Aerosol Sci Technol. 2012;46(8):913–24.

    Article  CAS  Google Scholar 

  54. Kim JA, Park JH, Hwang WJ. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications. 2016;13(8):820.

    Google Scholar 

  55. Jones BA. After the Dust Settles: The Infant Health Impacts of Dust Storms. J Assoc Environ Resour Econ. 2020;7(6):1005–32.

    Google Scholar 

  56. Chen S, Jiang N, Huang J, et al. Quantifying contributions of natural and anthropogenic dust emission from different climatic regions. Atmos Environ. 2018;191:94–104.

    Article  CAS  Google Scholar 

  57. Penner JE, Charlson RJ, Hales JM, et al. Quantifying and Minimizing Uncertainty of Climate Forcing by Anthropogenic Aerosols. Bull Am Meteor Soc. 1994;75(3):375–400.

    Article  Google Scholar 

  58. Tegen I, Fung I. Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res: Atmos. 1995;100(D9):18707–26.

    Article  Google Scholar 

  59. Chen S, Huang J, Zhao C, et al. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J Geophys Res: Atmos. 2013;118(2):797–812.

    Article  Google Scholar 

  60. Zhao C, Chen S, Leung LR, et al. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos Chem Phys. 2013;13(21):10733–53.

    Article  CAS  Google Scholar 

  61. Meiyappan P, Dalton M, O’Neill BC, et al. Spatial modeling of agricultural land use change at global scale. Ecol Model. 2014;291:152–74.

    Article  Google Scholar 

  62. Wang Z, Chen S, Liu C, et al. Dynamic dust source regions and the associated natural and anthropogenic dust emissions at the global scale. Front Earth Sci. 2022;10:802658.

  63. Neff JC, Ballantyne AP, Farmer GL, et al. Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci. 2008;1(3):189–95.

    Article  CAS  Google Scholar 

  64. Du H, Zuo X, Li S, et al. Wind erosion changes induced by different grazing intensities in the desert steppe, Northern China. Agr Ecosyst Environ. 2019;274:1–13.

    Article  Google Scholar 

  65. Mao R, Ho C-H, Shao Y, et al. Influence of Arctic Oscillation on dust activity over northeast Asia. Atmos Environ. 2011;45(2):326–37.

    Article  CAS  Google Scholar 

  66. Chen S, Huang J, Li J, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China Earth Sci. 2017;60(7):1338–55.

    Article  Google Scholar 

  67. Westphal DL, Toon OB, Carlson TNJJ. A case study of mobilization and transport of Saharan dust. 1988;45:2145–75.

    Google Scholar 

  68. Shao Y, Raupach A, Leys JFJSR. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Soil Res. 1996;34:309–42.

    Article  Google Scholar 

  69. Marticorena B, Bergametti G, Aumont B, et al. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J Geophys Res: Atmos. 1997;102(4):4387–404.

    Article  Google Scholar 

  70. Zender CS, Bian H, Newman D, (2003). Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J Geophys Res: Atmos 108(D14)

  71. Mahowald N, Kohfeld K, Hansson M, et al. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res: Atmos. 1999;104(D13):15895–916.

    Article  Google Scholar 

  72. Perlwitz J, Tegen I, Miller RL. Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J Geophys Res: Atmos. 2001;106(16):18167–92.

    Article  CAS  Google Scholar 

  73. Ginoux P, Chin M, Tegen I, et al. Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res: Atmos. 2001;106(D17):20255–73.

    Article  Google Scholar 

  74. Woodward S. Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J Geophys Res: Atmos. 2001;106(D16):18155–66.

    Article  CAS  Google Scholar 

  75. Marticorena B, Bergametti G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res: Atmos. 1995;100(D8):16415–30.

    Article  Google Scholar 

  76. Shao Y. A model for mineral dust emission. J Geophys Res: Atmos. 2001;106(D17):20239–54.

    Article  Google Scholar 

  77. Shao Y. Simplification of a dust emission scheme and comparison with data. J Geophys Res Atmos. 2004;109:D120202.

  78. Zheng Y, Zhao T, Che H, et al. A 20-year simulated climatology of global dust aerosol deposition. Sci Total Environ. 2016;557–558:861–8.

    Article  Google Scholar 

  79. Xi X, Sokolik IN. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. J Geophys Res Atmos. 2016;121(20):12,270-212,281.

    Article  CAS  Google Scholar 

  80. Xia W, Wang Y, Chen S, et al. Double Trouble of Air Pollution by Anthropogenic Dust. Environ Sci Technol. 2022;56(2):761–9.

    Article  CAS  Google Scholar 

  81. Chen Y, Zhang Y, Chen S, et al. Impacts of dynamic dust sources coupled with WRF-Chem 3.9.1 on the dust simulation over East Asia. Geosci Model Dev Discuss. 2023;2023:1–25.

    CAS  Google Scholar 

  82. Zhang Y, Chen Y, Chen S, et al. Mongolia dust transport across borders under the background of global warming. Global Planet Change. 2024;239:104509.

    Article  Google Scholar 

  83. Shao Y, Klose M, Wyrwoll K-H. Recent global dust trend and connections to climate forcing. J Geophys Res: Atmos. 2013;118(19):11,107-111,118.

    Article  Google Scholar 

  84. Csavina J, Field J, Félix O, et al. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci Total Environ. 2014;487:82–90.

    Article  CAS  Google Scholar 

  85. Masson-Delmotte V, Pörtner HO, Skea J, et al. Global warming of 1.5°C. Intergovernmental Panel on Climate Change. 2018. pp. 3–24.

  86. Shi L, Zhang J, Yao F, et al. Drivers to dust emissions over dust belt from 1980 to 2018 and their variation in two global warming phases. Sci Total Environ. 2021;767:144860.

    Article  CAS  Google Scholar 

  87. Kaskaoutis DG, Dumka UC, Rashki A, et al. Analysis of intense dust storms over the eastern Mediterranean in March 2018: Impact on radiative forcing and Athens air quality. Atmos Environ. 2019;209:23–39.

    Article  CAS  Google Scholar 

  88. Munkhtsetseg E, Shinoda M, Gillies JA, et al. Relationships between soil moisture and dust emissions in a bare sandy soil of Mongolia. Particuology. 2016;28:131–7.

    Article  Google Scholar 

  89. Shen Y, Zhang C, Wang X, et al. Statistical characteristics of wind erosion events in the erosion area of Northern China. CATENA. 2018;167:399–410.

    Article  Google Scholar 

  90. Wang S, Yu Y, Zhang X-X, et al. Weakened dust activity over China and Mongolia from 2001 to 2020 associated with climate change and land-use management. Environ Res Lett. 2021;16(12):124056.

    Article  Google Scholar 

  91. Li K, Xiong X, Wang H, et al. Spatial Distribution and Formation Causes of Frequent Dust Weather in West Inner Mongolia (in Chinese). Arid Zone Res. 2019;36(03):657–63.

    Google Scholar 

  92. Yang J, Zhao T, Cheng X, et al. Temporal and spatial variations of sandstorm and the related meteorological influences over northern China from 2000 to 2019 (in Chinese). Acta Sci Circum. 2021;41(08):2966–75.

    CAS  Google Scholar 

  93. Yang X, Zhang Q, Ye P, et al. Characteristics and causes of persistent sand-dust weather in mid-March 2021 over Northern China (in Chinese). J Desert Res. 2021;41(03):245–55.

    Google Scholar 

  94. Chen S, Zhao D, Huang J, et al. Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023. Adv Atmos Sci. 2023;40(9):1549–57.

    Article  Google Scholar 

  95. Zhu C, Wang B, Qian W. Why do dust storms decrease in northern China concurrently with the recent global warming?. Geophys Res Lett. 2008;35(18):L18702.

  96. Namdari S, Karimi N, Sorooshian A, et al. Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ. 2018;173:265–76.

    Article  CAS  Google Scholar 

  97. Yin Z, Wan Y, Zhang Y, et al. Why super sandstorm 2021 in North China? Ntl Sci Rev. 2022;9(3):nwab165.

    Article  Google Scholar 

  98. An L, Che H, Xue M, et al. Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Relationships with surface conditions and climate change. Sci Total Environ. 2018;633:452–62.

    Article  CAS  Google Scholar 

  99. Yang X, Chen L, Zhang Y, et al. Variation Characteristic of Sand-Dust Days and Its Relationship with Meteorological Factors in East of Hexi Corridor (in Chinese). Res Environ Sci. 2018;31(08):1373–81.

    Google Scholar 

  100. Guan Q, Sun X, Yang J, et al. Dust Storms in Northern China: Long-Term Spatiotemporal Characteristics and Climate Controls. J Clim. 2017;30(17):6683–700.

    Article  Google Scholar 

  101. Ginoux P, Deroubaix A. Space Observations of Dust in East Asia. In: Bouarar I, Wang X, Brasseur GP, editors. Air Pollution in Eastern Asia: An Integrated Perspective. Cham: Springer International Publishing; 2017. p. 365–83.

    Chapter  Google Scholar 

  102. Cheng Y, Dai T, Li J, et al. Measurement Report: Determination of aerosol vertical features on different timescales over East Asia based on CATS aerosol products. Atmos Chem Phys. 2020;20(23):15307–22.

    Article  CAS  Google Scholar 

  103. Lakshmi NB, Nair VS, Babu SS. Assessment of the vertical distribution of speciated aerosol absorption over South Asia using spaceborne LIDAR and ground-based observations. Remote Sens Environ. 2021;253:112164.

    Article  Google Scholar 

  104. Song Q, Zhang Z, Yu H, et al. Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability. Atmos Chem Phys. 2021;21(17):13369–95.

    Article  CAS  Google Scholar 

  105. Toth TD, Zhang J, Campbell JR, et al. Temporal variability of aerosol optical thickness vertical distribution observed from CALIOP. J Geophys Res: Atmos. 2016;121(15):9117–39.

    Article  Google Scholar 

  106. Proestakis E, Amiridis V, Marinou E, et al. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP. Atmos Chem Phys. 2018;18(2):1337–62.

    Article  CAS  Google Scholar 

  107. Kim D, Chin M, Yu H, et al. Asian and Trans-Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis. J Geophys Res: Atmos. 2019;124(23):13534–59.

    Article  Google Scholar 

  108. Kaufman YJ, Koren I, Remer LA, et al. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res Atmos. 2005;110:D10S12.

  109. Xu C, Ma Y, Yang K, et al. Tibetan Plateau Impacts on Global Dust Transport in the Upper Troposphere. J Clim. 2018;31(12):4745–56.

    Article  Google Scholar 

  110. Maki T, Lee KC, Pointing SB, et al. Desert and anthropogenic mixing dust deposition influences microbial communities in surface waters of the western Pacific Ocean. Sci Total Environ. 2021;791:148026.

    Article  CAS  Google Scholar 

  111. Shi L, Zhang J, Yao F, et al. Temporal variation of dust emissions in dust sources over Central Asia in recent decades and the climate linkages. Atmos Environ. 2020;222:117176.

    Article  CAS  Google Scholar 

  112. Yu Y, Kalashnikova OV, Garay MJ, et al. Climatology of Asian dust activation and transport potential based on MISR satellite observations and trajectory analysis. Atmos Chem Phys. 2019;19(1):363–78.

    Article  CAS  Google Scholar 

  113. Prospero JM, Ginoux P, Torres O, et al. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (Toms) Absorbing Aerosol Product. Rev Geophys. 2002;40(1):2–31.

    Article  Google Scholar 

  114. Chin M, Diehl T, Ginoux P, et al. Intercontinental transport of pollution and dust aerosols: implications for regional air quality. Atmos Chem Phys. 2007;7(21):5501–17.

    Article  CAS  Google Scholar 

  115. Han Y, Wang T, Tang J, et al. New insights into the Asian dust cycle derived from CALIPSO lidar measurements. Remote Sens Environ. 2022;272:112906.

    Article  Google Scholar 

  116. Xu J, Jia J, Han F, et al. Trans-pacific aerosol vertical structure revealed by spaceborne lidar CALIOP. Atmos Environ. 2019;201:92–100.

    Article  CAS  Google Scholar 

  117. Kaufman YJ, Tanré D, Boucher O. A satellite view of aerosols in the climate system. Nature. 2002;419(6903):215–23.

    Article  CAS  Google Scholar 

  118. Engelstaedter S, Tegen I, Washington R. North African dust emissions and transport. Earth Sci Rev. 2006;79(1):73–100.

    Article  Google Scholar 

  119. Yu H, Chin M, Yuan T, et al. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys Res Lett. 2015;42(6):1984–91.

    Article  CAS  Google Scholar 

  120. Liu J, Zhao T, Liu Y, et al. Impact of trans-eurasian dust aerosol transport on atmospheric environment in East Asian Region (in Chinese). Acta Sci Circum. 2014;34(12):3102–11.

    CAS  Google Scholar 

  121. Huang J, Liu Y, Wang T, et al. An Overview of the Aerosol and Cloud Properties and Water Vapor Budget over the Qinghai-Xizang Plateau. Plateau Meteorol. 2021;40(06):1225–40.

    Google Scholar 

  122. Huang J, Minnis P, Chen B, et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J Geophys Res Atmos. 2008;113:D23212.

  123. Lau KM, Kim MK, Kim KM. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn. 2006;26(7):855–64.

    Article  Google Scholar 

  124. Wang T, Tang J, Sun M, et al. Identifying a transport mechanism of dust aerosols over South Asia to the Tibetan Plateau: A case study. Sci Total Environ. 2021;758:143714.

    Article  CAS  Google Scholar 

  125. Zhang D, Iwasaka Y, Shi G, et al. Separated status of the natural dust plume and polluted air masses in an Asian dust storm event at coastal areas of China. J Geophys Res Atmos. 2005;110:D06302.

  126. Kim S-W, Yoon S-C, Kim J, et al. Asian dust event observed in Seoul, Korea, during 29–31 May 2008: Analysis of transport and vertical distribution of dust particles from lidar and surface measurements. Sci Total Environ. 2010;408(7):1707–18.

    Article  CAS  Google Scholar 

  127. Yu H, Yang Y, Wang H, et al. Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmos Chem Phys. 2020;20(1):139–61.

    Article  CAS  Google Scholar 

  128. Guo J, Lou M, Miao Y, et al. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environ Pollut. 2017;230:1030–9.

    Article  CAS  Google Scholar 

  129. Schuerger AC, Smith DJ, Griffin DW, et al. Science questions and knowledge gaps to study microbial transport and survival in Asian and African dust plumes reaching North America. Aerobiologia. 2018;34(4):425–35.

    Article  Google Scholar 

  130. Uno I, Eguchi K, Yumimoto K, et al. Large Asian dust layers continuously reached North America in April 2010. Atmos Chem Phys. 2011;11(14):7333–41.

    Article  CAS  Google Scholar 

  131. Sun H, Liu X, Wang A. Seasonal and interannual variations of atmospheric dust aerosols in mid and low latitudes of Asia – A comparative study. Atmos Res. 2020;244:105036.

    Article  CAS  Google Scholar 

  132. Buchard V, Randles CA, da Silva AM, et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J Clim. 2017;30(17):6851–72.

    Article  CAS  Google Scholar 

  133. Liu Y, Sato Y, Jia R, et al. Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmos Chem Phys. 2015;15(21):12581–94.

    Article  CAS  Google Scholar 

  134. Bi H, Chen S, Zhang D, et al. The Circumglobal Transport of Massive African Dust and Its Impacts on the Regional Circulation in Remote Atmosphere. B Am Meteorol Soc. 2024;105(3):E605–22.

    Article  Google Scholar 

  135. Wang Z, Ueda H, Huang M. A deflation module for use in modeling long-range transport of yellow sand over East Asia. J Geophys Res: Atmos. 2000;105(D22):26947–59.

    Article  Google Scholar 

  136. Zhao C, Dabu X, Li Y. Relationship between climatic factors and dust storm frequency in Inner Mongolia of China. Geophys Res Lett. 2004;31:L01103.

  137. Zhao TL, Gong SL, Zhang XY et al. Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport. J Geophys Res Atmos. 2003;108:D238665.

  138. Yu H, Kaufman YJ, Chin M, et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos Chem Phys. 2006;6(3):613–66.

    Article  CAS  Google Scholar 

  139. Liang L, Han Z, Li J, et al. Emission, transport, deposition, chemical and radiative impacts of mineral dust during severe dust storm periods in March 2021 over East Asia. Sci Total Environ. 2022;852:158459.

    Article  CAS  Google Scholar 

  140. Kok JF, Storelvmo T, Karydis VA, et al. Mineral dust aerosol impacts on global climate and climate change. Nat Rev Earth Environ. 2023;4(2):71–86.

    Article  Google Scholar 

  141. Zhang X. Aerosol over China and Their Climate Effect (in Chinese). Adv Earth Sci. 2007;01:12–6.

    Google Scholar 

  142. Wang T, Li S, Shen Y, et al. Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. J Geophys Res Atmos. 2010;115:D00K26.

  143. Di Biagio C, Balkanski Y, Albani S, et al. Direct Radiative Effect by Mineral Dust Aerosols Constrained by New Microphysical and Spectral Optical Data. Geophys Res Lett. 2020;47(2):e2019GL086186.

    Article  Google Scholar 

  144. Huang J, Fu Q, Su J, et al. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos Chem Phys. 2009;9(12):4011–21.

    Article  CAS  Google Scholar 

  145. Hanna S, Yang R, Yin XJIJOE, et al. Evaluations of numerical weather prediction (NWP) models from the point of view of inputs required by atmospheric dispersion models. Int J Environ Pollut. 2000;14:98.

    Article  CAS  Google Scholar 

  146. Kok JF, Ridley DA, Zhou Q, et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat Geosci. 2017;10(4):274–8.

    Article  CAS  Google Scholar 

  147. Valenzuela A, Costa MJ, Guerrero-Rascado JL, et al. Solar and thermal radiative effects during the 2011 extreme desert dust episode over Portugal. Atmos Environ. 2017;148:16–29.

    Article  CAS  Google Scholar 

  148. Granados-Muñoz MJ, Sicard M, Román R, et al. Impact of mineral dust on shortwave and longwave radiation: evaluation of different vertically resolved parameterizations in 1-D radiative transfer computations. Atmos Chem Phys. 2019;19(1):523–42.

    Article  Google Scholar 

  149. Ahn H-J, Park S-U, Chang L-S. Effect of Direct Radiative Forcing of Asian Dust on the Meteorological Fields in East Asia during an Asian Dust Event Period. J Appl Meteorol Climatol. 2007;46(10):1655–81.

    Article  Google Scholar 

  150. Heinold B, Tegen I, Schepanski K, et al. Dust radiative feedback on Saharan boundary layer dynamics and dust mobilization. Geophys Res Lett. 2008;35:L20817.

  151. Yue X, Wang H, Liao H, et al. Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions. J Geophys Res Atmos. 2010;115:D04201.

  152. Choobari OA, Zawar-Reza P, Sturman A. The global distribution of mineral dust and its impacts on the climate system: A review. Atmos Res. 2014;138:152–65.

    Article  CAS  Google Scholar 

  153. Huang G, Zhou Y, Guo Z, et al. The influence of dust aerosols on solar radiation and near-surface temperature during a severe duststorm transport episode. Front Envion Sci. 2023;11:1126302.

  154. Dufresne J-L, Gautier C, Ricchiazzi P, et al. Longwave Scattering Effects of Mineral Aerosols. J Atmos Sci. 2002;59(12):1959–66.

    Article  Google Scholar 

  155. Twomey SA, Piepgrass M, Wolfe TL. An assessment of the impact of pollution on global cloud albedo. Tellus B. 1984;36B(5):356–66.

    Article  CAS  Google Scholar 

  156. Rosenfeld D, Lohmann U, Raga GB, et al. Flood or Drought: How Do Aerosols Affect Precipitation? Science. 2008;321(5894):1309–13.

    Article  CAS  Google Scholar 

  157. Huang J, Wang T, Wang W, et al. Climate effects of dust aerosols over East Asian arid and semiarid regions. J Geophys Res: Atmos. 2014;119(19):11,398-311,416.

    Article  Google Scholar 

  158. Qian Y, Gong D, Fan J, et al. Heavy pollution suppresses light rain in China: Observations and modeling. J Geophys Res Atmos. 2009;114:D00K02.

  159. Lohmann U, Feichter J. Global indirect aerosol effects: a review. Atmos Chem Phys. 2005;5(3):715–37.

    Article  CAS  Google Scholar 

  160. Shen F, Wang T, Zhuang B, et al. The first indirect radiative forcing of dust aerosol and its effect on regional climate in China (in Chinese). China Environ Sci. 2011;31(07):1057–63.

    Google Scholar 

  161. Ge J, Li W, Huang J, et al. Dust Accelerates the Life Cycle of High Clouds Unveiled Through Strongly-Constrained Meteorology. Geophys Res Lett. 2024;51(17):e2024GL109998.

    Article  Google Scholar 

  162. Huang J, Minnis P, Lin B, et al. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys Res Lett. 2006;33:L06824.

  163. Huang J, Lin B, Minnis P, et al. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys Res Lett. 2006;33:L06824.

  164. Johnson BT, Shine KP, Forster PM. The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Q J R Meteorol Soc. 2004;130(599):1407–22.

    Article  Google Scholar 

  165. Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res: Atmos. 1997;102(D6):6831–64.

    Article  CAS  Google Scholar 

  166. Ackerman AS, Toon OB, Stevens DE, et al. Reduction of Tropical Cloudiness by Soot. Science. 2000;288(5468):1042–7.

    Article  CAS  Google Scholar 

  167. Koren I, Kaufman YJ, Remer LA, et al. Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation. Science. 2004;303(5662):1342–5.

    Article  CAS  Google Scholar 

  168. Huang J, Zhang C, Prospero JM. African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J Geophys Res Atmos. 2010;115:D05202.

  169. Cook J, Highwood EJ. Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Q J R Meteorol Soc. 2004;130(596):175–91.

    Article  Google Scholar 

  170. Feng T, Yuan T, Cao J, et al. The influence of dust on extreme precipitation at a large city in North China. Sci Total Environ. 2023;901:165890.

    Article  CAS  Google Scholar 

  171. Yuan T, Huang J, Cao J, et al. Indian dust-rain storm: Possible influences of dust ice nuclei on deep convective clouds. Sci Total Environ. 2021;779:146439.

    Article  CAS  Google Scholar 

  172. Liu Y, Huang J, Wang T, et al. Aerosol-cloud interactions over the Tibetan Plateau: An overview. Earth Sci Rev. 2022;234:104216.

    Article  Google Scholar 

  173. Sarangi C, Qian Y, Rittger K, et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat Clim Chang. 2020;10(11):1045–51.

    Article  Google Scholar 

  174. Di Mauro B. A darker cryosphere in a warming world. Nat Clim Chang. 2020;10(11):979–80.

    Article  Google Scholar 

  175. Shi Z, Xie X, Li X, et al. Snow-darkening versus direct radiative effects of mineral dust aerosol on the Indian summer monsoon onset: role of temperature change over dust sources. Atmos Chem Phys. 2019;19(3):1605–22.

    Article  CAS  Google Scholar 

  176. Sun Y, Zhao C. Influence of Saharan Dust on the Large-Scale Meteorological Environment for Development of Tropical Cyclone Over North Atlantic Ocean Basin. J Geophys Res: Atmos. 2020;125(23):e2020JD033454.

    Article  Google Scholar 

  177. Zhang XY, Arimoto R, An ZS. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophys Res: Atmos. 1997;102(D23):28041–7.

    Article  CAS  Google Scholar 

  178. Kang D, Wang H. Analysis on the decadal scale variation of the dust storm in North China. Sci China, Ser D Earth Sci. 2005;48(12):2260–6.

    Article  Google Scholar 

  179. Gong D-Y, Mao R, Fan Y-D. East Asian dust storm and weather disturbance: possible links to the Arctic Oscillation. Int J Climatol. 2006;26(10):1379–96.

    Article  Google Scholar 

  180. Nagashima K, Suzuki Y, Irino T, et al. Asian dust transport during the last century recorded in Lake Suigetsu sediments. Geophys Res Lett. 2016;43(6):2835–42.

    Article  Google Scholar 

  181. Sun J, Zhang M, Liu T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J Geophys Res: Atmos. 2001;106(D10):10325–33.

    Article  Google Scholar 

  182. Gong SL, Zhang XY, Zhao TL, et al. A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific Transport. Part II: Interannual Variability and Climate Connections. J Clim. 2006;19(1):104–22.

    Article  Google Scholar 

  183. Mao R, Gong D, Bao J, et al. Possible influence of Arctic Oscillation on dust storm frequency in North China. J Geog Sci. 2011;21(2):207–18.

    Article  CAS  Google Scholar 

  184. Gao H, Washington R. Arctic oscillation and the interannual variability of dust emissions from the Tarim Basin: a TOMS AI based study. Clim Dyn. 2010;35(2):511–22.

    Article  Google Scholar 

  185. Liu H, Liu X, Dong B. Influence of Central Siberian Snow-Albedo Feedback on the Spring East Asian Dust Cycle and Connection With the Preceding Winter Arctic Oscillation. J Geophys Res: Atmos. 2018;123(23):13,368-313,385.

    Article  Google Scholar 

  186. Zhao Y, Huang A, Zhu X, et al. The impact of the winter North Atlantic Oscillation on the frequency of spring dust storms over Tarim Basin in northwest China in the past half-century. Environ Res Lett. 2013;8(2):024026.

    Article  Google Scholar 

  187. Fan K, Wang H. Antarctic oscillation and the dust weather frequency in North China. Geophys Res Lett. 2004;31:L10201.

  188. Gong DY, Mao R, Shi PJ., et al. Correlation between east Asian dust storm frequency and PNA. Geophys Res Lett. 2007;34:L14710.

  189. Lee YG, Kim J, Ho C-H, et al. The effects of ENSO under negative AO phase on spring dust activity over northern China: an observational investigation. Int J Climatol. 2015;35(6):935–47.

    Article  Google Scholar 

  190. Hara Y, Uno I, Wang Z. Long-term variation of Asian dust and related climate factors. Atmos Environ. 2006;40(35):6730–40.

    Article  CAS  Google Scholar 

  191. Liu J, Wu D, Liu G, et al. Impact of Arctic amplification on declining spring dust events in East Asia. Clim Dyn. 2020;54(3):1913–35.

    Article  Google Scholar 

  192. Fan K, Xie Z, Wang H, et al. Frequency of spring dust weather in North China linked to sea ice variability in the Barents Sea. Clim Dyn. 2018;51(11):4439–50.

    Article  Google Scholar 

  193. Gui K, Yao W, Che H, et al. Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers. Atmos Chem Phys. 2022;22(12):7905–32.

    Article  CAS  Google Scholar 

  194. Hu Z, Ma Y, Jin Q, et al. Attribution of the March 2021 exceptional dust storm in North China. Bull Am Meteor Soc. 2023;104(4):E749–55.

    Article  Google Scholar 

  195. Wu Z, Yu L. Seasonal prediction of the East Asian summer monsoon with a partial-least square model. Clim Dyn. 2016;46(9):3067–78.

    Article  Google Scholar 

  196. Wang C, Li Z, Chen Y, et al. Drought-heatwave compound events are stronger in drylands. Weather Clim Extremes. 2023;42:100632.

    Article  Google Scholar 

  197. Aryal YN, Evans S. Global Dust Variability Explained by Drought Sensitivity in CMIP6 Models. J Geophys Res: Earth Surf. 2021;126(6):e2021JF006073.

    Article  Google Scholar 

  198. Pu B, Jin Q, Ginoux P, et al. Compound Heat Wave, Drought, and Dust Events in California. J Clim. 2022;35(24):8133–52.

    Article  Google Scholar 

  199. Liu Y, Huang J, Tan Z, et al. Compound events of heatwave and dust storm in the Taklamakan Desert. Sci China Earth Sci. 2024;67(7):2073–83.

    Article  Google Scholar 

  200. Fussell JC, Kelly FJ. Mechanisms underlying the health effects of desert sand dust. Environ Int. 2021;157:106790.

    Article  CAS  Google Scholar 

  201. Meo SA, Almutairi FJ, Abukhalaf AA, et al. Sandstorm and its effect on particulate matter PM 2.5, carbon monoxide, nitrogen dioxide, ozone pollutants and SARS-CoV-2 cases and deaths. Sci Total Environ. 2021;795:148764.

    Article  CAS  Google Scholar 

  202. Zhang X, Zhao L, Tong DQ, et al. A Systematic review of global desert dust and associated human health effects. Atmosphere. 016;7(12):158.

  203. Hsieh N-H, Liao C-M. Assessing exposure risk for dust storm events-associated lung function decrement in asthmatics and implications for control. Atmos Environ. 2013;68:256–64.

    Article  CAS  Google Scholar 

  204. Goudie AS. Desert dust and human health disorders. Environ Int. 2014;63:101–13.

    Article  CAS  Google Scholar 

  205. Tan L, Wei G, Lei F, et al. Research progress of the effects of dust weather on human health and its mechanism (in Chinese). Chinese J Clin Med. 2023;30(06):1042–50.

    Google Scholar 

  206. Achilleos S, Mouzourides P, Kalivitis N, et al. Spatio-temporal variability of desert dust storms in Eastern Mediterranean (Crete, Cyprus, Israel) between 2006 and 2017 using a uniform methodology. Sci Total Environ. 2020;714:136693.

    Article  CAS  Google Scholar 

  207. Maki T, Tanaka TY, Koshiro T, et al. Changes in dust emissions in the Gobi Desert due to global warming using MRI-ESM2.0. SOLA. 2022;18:218–24.

  208. De Longueville F, Hountondji Y-C, Henry S, et al. What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions? Sci Total Environ. 2010;409(1):1–8.

    Article  Google Scholar 

  209. Giannadaki D, Pozzer A, Lelieveld J. Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos Chem Phys. 2014;14(2):957–68.

    Article  Google Scholar 

  210. Gonzalez-Martin C, Teigell-Perez N, Valladares B, et al. Chapter One - The Global Dispersion of Pathogenic Microorganisms by Dust Storms and Its Relevance to Agriculture. In: Sparks D, editor., et al., Advances in Agronomy. Academic Press; 2014. p. 1–41.

    Google Scholar 

  211. Rosenfeld D, Rudich Y, Lahav R. Desert dust suppressing precipitation: A possible desertification feedback loop. Proc Natl Acad Sci. 2001;98(11):5975–80.

    Article  CAS  Google Scholar 

  212. Yusan T, Dilinuer T, Wang X, et al. Elemental Characterization in PM2.5 during the Dust and Non-dust Periods in the Extremely-arid Areas (in Chinese). Ecol Environ Sci. 2017;26(09):1529–38.

    Google Scholar 

  213. Luo H, Wang Q, Guan Q, et al. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. J Hazard Mater. 2022;422:126878.

    Article  CAS  Google Scholar 

  214. Soleimani-Sardo M, Shirani M, Strezov V. Heavy metal pollution levels and health risk assessment of dust storms in Jazmurian region. Iran Sci Rep. 2023;13(1):7337.

    Article  CAS  Google Scholar 

  215. Gonzalez-Martin C, Teigell-Perez N, Lyles M, et al. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions. Res Microbiol. 2013;164(1):17–21.

    Article  Google Scholar 

  216. Griffin DW. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev. 2007;20(3):459–77.

    Article  Google Scholar 

  217. Soleimani Z, Teymouri P, DarvishiBoloorani A, et al. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos Environ. 2020;223:117187.

    Article  CAS  Google Scholar 

  218. Burrows SM, Elbert W, Lawrence MG, et al. Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems. Atmos Chem Phys. 2009;9(23):9263–80.

    Article  CAS  Google Scholar 

  219. Schweitzer MD, Calzadilla AS, Salamo O, et al. Lung health in era of climate change and dust storms. Environ Res. 2018;163:36–42.

    Article  CAS  Google Scholar 

  220. Yao C, Li G, Xu J. Research and Analysis of Correlation Between Dust Weather and Respiratory Infectious Diseases (in Chinese). Med Innov China. 2015;12(26):75–7.

    Google Scholar 

  221. Huang Z, Dong Q, Xue F, et al. Large-Scale Dust-Bioaerosol Field Observations in East Asia. Bull Am Meteor Soc. 2024;105(3):E501–17.

    Article  Google Scholar 

  222. Xue Y, Huang Y, Ho SSH, et al. Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China. Atmos Chem Phys. 2020;20(9):5425–36.

    Article  CAS  Google Scholar 

  223. Raaschou-Nielsen O, Antonsen S, Agerbo E, et al. PM2.5 air pollution components and mortality in Denmark. Environ Int. 2023;171:107685.

    Article  CAS  Google Scholar 

  224. Huang X, Jin Y, Guo X, et al. Impact of dust storm PM2.5 and PM10 on the phagocytic function of alveolar macrophages of rat. J Hygiene Res. 2004;33(2):154–7.

    Google Scholar 

  225. Dong J, Liu J. Relationship between Human Microbial Ecological Immune Regulation and Sand Dust Environment (in Chinese). J Environ Occup Med. 2014;31(10):811–5.

    CAS  Google Scholar 

  226. Van Pee T, Nawrot TS, van Leeuwen R, et al. Ambient particulate air pollution and the intestinal microbiome; a systematic review of epidemiological, in vivo and in vitro studies. Sci Total Environ. 2023;878:162769.

    Article  Google Scholar 

  227. Gyan K, Henry W, Lacaille S, et al. African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad. Int J Biometeorol. 2005;49(6):371–6.

    Article  CAS  Google Scholar 

  228. Chen Y-S, Sheen P-C, Chen E-R, et al. Effects of Asian dust storm events on daily mortality in Taipei Taiwan. Environ Res. 2004;95(2):151–5.

    Article  CAS  Google Scholar 

  229. Norboo T, Saiyed HN, Angchuk PT, et al. Mini review of high altitude health problems in Ladakh. Biomed Pharm Biomed Pharm. 2004;58(4):220–5.

    Article  CAS  Google Scholar 

  230. Perez L, Tobias A, Querol X, et al. Coarse particles from Saharan dust and daily mortality. Epidemiology. 2008;19(6):800–7.

    Article  Google Scholar 

  231. Chen Y-S, Yang C-Y. Effects of Asian Dust Storm Events On Daily Hospital Admissions For Cardiovascular Disease In Taipei Taiwan. J Toxicol Environ Health, Part A. 2005;68(17–18):1457–64.

    Article  CAS  Google Scholar 

  232. Kashima S, Yorifuji T, Tsuda T, et al. Asian dust and daily all-cause or cause-specific mortality in western Japan. Occup Environ Med. 2012;69(12):908–15.

    Article  Google Scholar 

  233. Sohrab D, Zainab J. Dust phenomenon affects on cardiovascular and respiratory hospitalizations and mortality “a case study in Kermanshah, during March-September 2010–2011. Iranian J Health Environ. 2013;6:65–76.

  234. Zhang C, Yan M, Du H, et al. Mortality risks from a spectrum of causes associated with sand and dust storms in China. Nat Commun. 2023;14(1):6867.

    Article  CAS  Google Scholar 

  235. Kashima S, Yorifuji T, Bae S, et al. Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos Environ. 2016;128:20–7.

    Article  CAS  Google Scholar 

  236. Renzi M, Forastiere F, Calzolari R, et al. Short-term effects of desert and non-desert PM(10) on mortality in Sicily, Italy. Environ Int. 2018;120:472–9.

    Article  CAS  Google Scholar 

  237. Hashizume M, Kim Y, Ng CFS, et al. Health Effects of Asian Dust: A Systematic Review and Meta-Analysis. Environ Health Perspect. 2020;128(6):66001.

    Article  Google Scholar 

  238. Tobías A, Stafoggia M. Modeling Desert Dust Exposures in Epidemiologic Short-term Health Effects Studies. Epidemiology. 2020;31(6):788–95.

    Article  Google Scholar 

  239. Jaafari J, Naddafi K, Yunesian M, et al. The acute effects of short term exposure to particulate matter from natural and anthropogenic sources on inflammation and coagulation markers in healthy young adults. Sci Total Environ. 2020;735:139417.

    Article  CAS  Google Scholar 

  240. Jaafari J, Naddafi K, Yunesian M, et al. Associations between short term exposure to ambient particulate matter from dust storm and anthropogenic sources and inflammatory biomarkers in healthy young adults. Sci Total Environ. 2021;761:144503.

    Article  CAS  Google Scholar 

  241. Ghozikali MG, Ansarin K, Naddafi K, et al. Short-term effects of particle size fractions on lung function of late adolescents. Environ Sci Pollut Res. 2018;25(22):21822–32.

    Article  CAS  Google Scholar 

  242. Thalib L, Al-Taiar A. Dust storms and the risk of asthma admissions to hospitals in Kuwait. Sci Total Environ. 2012;433:347–51.

    Article  CAS  Google Scholar 

  243. Trianti S-M, Samoli E, Rodopoulou S, et al. Desert dust outbreaks and respiratory morbidity in Athens Greece. Environ Health. 2017;16(1):72.

    Article  Google Scholar 

  244. Agier L, Deroubaix A, Martiny N, et al. Seasonality of meningitis in Africa and climate forcing: aerosols stand out. J R Soc Interface. 2013;10(79):20120814.

    Article  CAS  Google Scholar 

  245. Panikkath R, Jumper CA, Mulkey Z. Multilobar Lung Infiltrates after Exposure to Dust Storm: The Haboob Lung Syndrome. Am J Med. 2013;126(2):e5–7.

    Article  Google Scholar 

  246. Chan C-C, Ng H-C. A case-crossover analysis of Asian dust storms and mortality in the downwind areas using 14-year data in Taipei. Sci Total Environ. 2011;410–411:47–52.

    Article  Google Scholar 

  247. Mu H, Battsetseg B, Ito TY, et al. Health effects of dust storms: subjective eye and respiratory system symptoms in inhabitants in Mongolia. J Environ Health. 2011;73(8):18–20.

    Google Scholar 

  248. Kashima S, Yorifuji T, Suzuki E. Are People With a History of Disease More Susceptible to a Short-term Exposure to Asian Dust?: A Case-Crossover Study Among the Elderly in Japan. Epidemiology. 2017;28(1):60–6.

    Article  Google Scholar 

  249. Li S, Guo B, Jiang Y, et al. Long-term Exposure to Ambient PM2.5 and Its Components Associated With Diabetes: Evidence From a Large Population-Based Cohort From China. Diabetes care. 2023;46(1):111–9.

    Article  CAS  Google Scholar 

  250. Zhou P, Mo S, Peng M, et al. Long-term exposure to PM2.5 constituents in relation to glucose levels and diabetes in middle-aged and older Chinese. Ecotoxicol Environ Safe. 2022;245:114096.

    Article  CAS  Google Scholar 

  251. Li J, Dong Y, Song Y, et al. Long-term effects of PM2.5 components on blood pressure and hypertension in Chinese children and adolescents. Environ Int. 2022;161:107134.

    Article  CAS  Google Scholar 

  252. Higashi T, Kambayashi Y, Ohkura N, et al. Exacerbation of daily cough and allergic symptoms in adult patients with chronic cough by Asian dust: A hospital-based study in Kanazawa. Atmos Environ. 2014;97:537–43.

    Article  CAS  Google Scholar 

  253. Higashi T, Kambayashi Y, Ohkura N, et al. Effects of Asian dust on daily cough occurrence in patients with chronic cough: A panel study. Atmos Environ. 2014;92:506–13.

    Article  CAS  Google Scholar 

  254. Hasunuma H, Takeuchi A, Ono R, et al. Effect of Asian dust on respiratory symptoms among children with and without asthma, and their sensitivity. Sci Total Environ. 2021;753:141585.

    Article  CAS  Google Scholar 

  255. Pacheco SE, Guidos-Fogelbach G, Annesi-Maesano I, et al. Climate change and global issues in allergy and immunology. J Allergy Clin Immunol. 2021;148(6):1366–77.

    Article  Google Scholar 

  256. Tong DQ, Wang JXL, Gill TE, et al. Intensified dust storm activity and Valley fever infection in the southwestern United States. Geophys Res Lett. 2017;44(9):4304–12.

    Article  Google Scholar 

  257. Altindag DT, Baek D, Mocan N. Chinese Yellow Dust and Korean infant health. Soc Sci Med. 2017;186:78–86.

    Article  Google Scholar 

  258. Heft-Neal S, Burney J, Bendavid E, et al. Dust pollution from the Sahara and African infant mortality. Nat Sustain. 2020;3(10):863–71.

    Article  Google Scholar 

  259. Li Z, Chen L, Li M, et al. Prenatal exposure to sand and dust storms and children’s cognitive function in China: a quasi-experimental study. Lancet Planet Health. 2018;2(5):e214–22.

    Article  Google Scholar 

  260. Viel JF, Mallet Y, Raghoumandan C, et al. Impact of Saharan dust episodes on preterm births in Guadeloupe (French West Indies). Occup Environ Med. 2019;76(5):336–40.

    Article  Google Scholar 

  261. Ma Y, Zhou J, Yang S, et al. Assessment for the impact of dust events on measles incidence in western China. Atmos Environ. 2017;157:1–9.

    Article  CAS  Google Scholar 

  262. Gutierrez MP, Zuidema P, Mirsaeidi M, et al. Association between African Dust Transport and Acute Exacerbations of COPD in Miami.J Clin Med. 2020;9(8):2496.

  263. Kotsyfakis M, Zarogiannis SG, Patelarou E. The health impact of Saharan dust exposure. Int J Occup Med Environ Health. 2019;32(6):749–60.

    Article  Google Scholar 

  264. Bi H, Chen S, Zhang D, et al. The Circumglobal Transport of Massive African Dust and Its Impacts on the Regional Circulation in Remote Atmosphere. Bull Am Meteor Soc. 2024;105(3):E605–22.

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 42305089 and 42175106), Self-supporting Program of Guangzhou Laboratory (Grant No. SRPG22-007), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2022-pd05), Youth Science and Technology Fund Project of Gansu (Grant No. 22JR5RA512), Youth Foundation for Humanities and Social Sciences of the Ministry of Education (Grant No. 24YJCGJW008).

Author information

Authors and Affiliations

Authors

Contributions

LL conducted the literature search and drafted the manuscript. JH conceptualized the review and provided the funding support; LL and SC conceptualized the review and edited the manuscript. LL, JH, SC, SD, LZ, and JY critically revised and edited all sections of the manuscript for important intellectual content. The author has read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jianping Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, L., Huang, J., Chen, S. et al. A Comprehensive Review of Dust Events: Characteristics, Climate Feedbacks, and Public Health Risks. Curr Pollution Rep 11, 18 (2025). https://doi.org/10.1007/s40726-025-00347-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40726-025-00347-9

Keywords