Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Diabetic neuropathy

Abstract

The global epidemic of prediabetes and diabetes has led to a corresponding epidemic of complications of these disorders. The most prevalent complication is neuropathy, of which distal symmetric polyneuropathy (for the purpose of this Primer, referred to as diabetic neuropathy) is very common. Diabetic neuropathy is a loss of sensory function beginning distally in the lower extremities that is also characterized by pain and substantial morbidity. Over time, at least 50% of individuals with diabetes develop diabetic neuropathy. Glucose control effectively halts the progression of diabetic neuropathy in patients with type 1 diabetes mellitus, but the effects are more modest in those with type 2 diabetes mellitus. These findings have led to new efforts to understand the aetiology of diabetic neuropathy, along with new 2017 recommendations on approaches to prevent and treat this disorder that are specific for each type of diabetes. In parallel, new guidelines for the treatment of painful diabetic neuropathy using distinct classes of drugs, with an emphasis on avoiding opioid use, have been issued. Although our understanding of the complexities of diabetic neuropathy has substantially evolved over the past decade, the distinct mechanisms underlying neuropathy in type 1 and type 2 diabetes remains unknown. Future discoveries on disease pathogenesis will be crucial to successfully address all aspects of diabetic neuropathy, from prevention to treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patterns of nerve injury in diabetic neuropathy.
Fig. 2: The peripheral nervous system and alterations in diabetic neuropathy.
Fig. 3: Diabetic neuropathy pathogenesis.
Fig. 4: Central and peripheral mechanisms contributing to neuropathic pain in diabetic neuropathy.
Fig. 5: NCS and biopsy study in diabetic neuropathy.
Fig. 6: Treatment of painful diabetic neuropathy.

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF Diabetes Atlas - 8th edition: key messages. IDF https://diabetesatlas.org/key-messages.html (2019).

  2. Tabish, S. A. Is diabetes becoming the biggest epidemic of the twenty-first century? Int. J. Health Sci. (Qassim) 1, V–VIII (2007).

  3. World Health Organization. Diabetes. WHO https://www.who.int/news-room/fact-sheets/detail/diabetes (2018).

  4. Wang, L. et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 317, 2515–2523 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anjana, R. M. et al. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 5, 585–596 (2017).

    Article  PubMed  Google Scholar 

  6. Centers for Disease Control and Prevention. Prediabetes: your chance to prevent type 2 diabetes. CDC https://www.cdc.gov/diabetes/basics/prediabetes.html (updated 21 Jun 2018).

  7. Callaghan, B. C., Price, R. S., Chen, K. S. & Feldman, E. L. The importance of rare subtypes in diagnosis and treatment of peripheral neuropathy: a review. JAMA Neurol. 72, 1510–1518 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boyle, J. P., Thompson, T. J., Gregg, E. W., Barker, L. E. & Williamson, D. F. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 8, 29 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pop-Busui, R. et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care 40, 136–154 (2017). This article contains the most recent recommendations from the ADA for the prevention, screening, diagnosis, management and treatment of diabetic neuropathy, as well as recommended research and clinical trial neuropathy end points.

    Article  CAS  PubMed  Google Scholar 

  10. Gordois, A., Scuffham, P., Shearer, A., Oglesby, A. & Tobian, J. A. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care 26, 1790–1795 (2003).

    Article  PubMed  Google Scholar 

  11. Italian General Practitioner Study Group (IGPSG). Chronic symmetric symptomatic polyneuropathy in the elderly: a field screening investigation in two Italian regions. I. Prevalence and general characteristics of the sample. Neurology 45, 1832–1836 (1995).

    Article  Google Scholar 

  12. Bharucha, N. E., Bharucha, A. E. & Bharucha, E. P. Prevalence of peripheral neuropathy in the Parsi community of Bombay. Neurology 41, 1315–1317 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Callaghan, B. C. et al. Role of neurologists and diagnostic tests on the management of distal symmetric polyneuropathy. JAMA Neurol. 71, 1143–1149 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Visser, N. A., Notermans, N. C., Linssen, R. S., van den Berg, L. H. & Vrancken, A. F. Incidence of polyneuropathy in Utrecht, the Netherlands. Neurology 84, 259–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Ang, L., Jaiswal, M., Martin, C. & Pop-Busui, R. Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Curr. Diab. Rep. 14, 528–0528 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Martin, C. L., Albers, J. W. & Pop-Busui, R. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 37, 31–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Pop-Busui, R. et al. Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care 36, 3208–3215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franklin, G. M., Kahn, L. B., Baxter, J., Marshall, J. A. & Hamman, R. F. Sensory neuropathy in non-insulin-dependent diabetes mellitus. The San Luis Valley Diabetes study. Am. J. Epidemiol. 131, 633–643 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Partanen, J. et al. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 333, 89–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Dyck, P. J. et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43, 817–824 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Boulton, A. J., Knight, G., Drury, J. & Ward, J. D. The prevalence of symptomatic, diabetic neuropathy in an insulin-treated population. Diabetes Care 8, 125–128 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Tesfaye, S. et al. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 352, 341–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Andersen, S. T. et al. Risk factors for incident diabetic polyneuropathy in a cohort with screen-detected type 2 diabetes followed for 13 years: ADDITION-Denmark. Diabetes Care 41, 1068–1075 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Callaghan, B. C. et al. Diabetes and obesity are the main metabolic drivers of peripheral neuropathy. Ann. Clin. Transl Neurol. 5, 397–405 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Callaghan, B. C. et al. Metabolic syndrome components are associated with symptomatic polyneuropathy independent of glycemic status. Diabetes Care 39, 801–807 (2016). This study demonstrates a link between the number of metabolic syndrome components and neuropathy prevalence that is independent of glycaemic status.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Callaghan, B. C. et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 73, 1468–1476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hanewinckel, R. et al. Metabolic syndrome is related to polyneuropathy and impaired peripheral nerve function: a prospective population-based cohort study. J. Neurol. Neurosurg. Psychiatry 87, 1336–1342 (2016).

    Article  PubMed  Google Scholar 

  28. Lu, B. et al. Determination of peripheral neuropathy prevalence and associated factors in Chinese subjects with diabetes and pre-diabetes - ShangHai Diabetic neuRopathy Epidemiology and Molecular Genetics Study (SH-DREAMS). PLOS ONE 8, e61053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tesfaye, S. & Selvarajah, D. The Eurodiab study: what has this taught us about diabetic peripheral neuropathy? Curr. Diab. Rep. 9, 432–434 (2009).

    Article  PubMed  Google Scholar 

  30. Callaghan, B. C., Price, R. S. & Feldman, E. L. Distal symmetric polyneuropathy: a review. JAMA 314, 2172–2181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prabodha, L. B. L., Sirisena, N. D. & Dissanayake, V. H. W. Susceptible and prognostic genetic factors associated with diabetic peripheral neuropathy: a comprehensive literature review. Int. J. Endocrinol. 2018, 8641942 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Politi, C. et al. Recent advances in exploring the genetic susceptibility to diabetic neuropathy. Diabetes Res. Clin. Pract. 120, 198–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Dunnigan, S. K. et al. Conduction slowing in diabetic sensorimotor polyneuropathy. Diabetes Care 36, 3684–3690 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gumy, L. F., Bampton, E. T. & Tolkovsky, A. M. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol. Cell Neurosci. 37, 298–311 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Mizisin, A. P., Shelton, G. D., Wagner, S., Rusbridge, C. & Powell, H. C. Myelin splitting, Schwann cell injury and demyelination in feline diabetic neuropathy. Acta Neuropathol. 95, 171–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Pan, S. & Chan, J. R. Regulation and dysregulation of axon infrastructure by myelinating glia. J. Cell Biol. 216, 3903–3916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feldman, E. L., Nave, K. A., Jensen, T. S. & Bennett, D. L. H. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93, 1296–1313 (2017). This article provides a detailed review of advances in our understanding of the pathways underlying peripheral nerve injury and pain in diabetic neuropathy, including systems biology insights and ideas related to bioenergetic crosstalk and the axon–Schwann cell relationship.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Court, F. A., Hendriks, W. T., MacGillavry, H. D., Alvarez, J. & van Minnen, J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci. 28, 11024–11029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Willis, D. E. & Twiss, J. L. The evolving roles of axonally synthesized proteins in regeneration. Curr. Opin. Neurobiol. 16, 111–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Cashman, C. R. & Hoke, A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci. Lett. 596, 33–50 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scott, J. N., Clark, A. W. & Zochodne, D. W. Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain 122, 2109–2118 (1999).

    Article  PubMed  Google Scholar 

  42. Lupachyk, S., Watcho, P., Stavniichuk, R., Shevalye, H. & Obrosova, I. G. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes 62, 944–952 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, J., Pan, P., Anyika, M., Blagg, B. S. & Dobrowsky, R. T. Modulating molecular chaperones improves mitochondrial bioenergetics and decreases the inflammatory transcriptome in diabetic sensory neurons. ACS Chem. Neurosci. 6, 1637–1648 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Urban, M. J. et al. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy. Exp. Neurol. 235, 388–396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ilnytska, O. et al. Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 55, 1686–1694 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lupachyk, S., Shevalye, H., Maksimchyk, Y., Drel, V. R. & Obrosova, I. G. PARP inhibition alleviates diabetes-induced systemic oxidative stress and neural tissue 4-hydroxynonenal adduct accumulation: correlation with peripheral nerve function. Free Radic. Biol. Med. 50, 1400–1409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng, C. et al. Evidence for epigenetic regulation of gene expression and function in chronic experimental diabetic neuropathy. J. Neuropathol. Exp. Neurol. 74, 804–817 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Toth, C., Brussee, V. & Zochodne, D. W. Remote neurotrophic support of epidermal nerve fibres in experimental diabetes. Diabetologia 49, 1081–1088 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Fernyhough, P., Diemel, L. T., Brewster, W. J. & Tomlinson, D. R. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J. Neurochem. 64, 1231–1237 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Fernyhough, P., Diemel, L. T. & Tomlinson, D. R. Target tissue production and axonal transport of neurotrophin-3 are reduced in streptozotocin-diabetic rats. Diabetologia 41, 300–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Delcroix, J. D., Michael, G. J., Priestley, J. V., Tomlinson, D. R. & Fernyhough, P. Effect of nerve growth factor treatment on p75NTR gene expression in lumbar dorsal root ganglia of streptozocin-induced diabetic rats. Diabetes 47, 1779–1785 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Hur, J. et al. The metabolic syndrome and microvascular complications in a murine model of type 2 diabetes. Diabetes 64, 3294–3304 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hur, J. et al. Transcriptional networks of murine diabetic peripheral neuropathy and nephropathy: common and distinct gene expression patterns. Diabetologia 59, 1297–1306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McGregor, B. A. et al. Conserved transcriptional signatures in human and murine diabetic peripheral neuropathy. Sci. Rep. 8, 17678 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kobayashi, M. et al. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22. Dis. Model. Mech. 10, 215–224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zochodne, D. W. & Ho, L. T. The influence of sulindac on experimental streptozotocin-induced diabetic neuropathy. Can. J. Neurol. Sci. 21, 194–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Viader, A. et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 77, 886–898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vincent, A. M., Callaghan, B. C., Smith, A. L. & Feldman, E. L. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 7, 573–583 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Vincent, A. M., Kato, K., McLean, L. L., Soules, M. E. & Feldman, E. L. Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid. Redox Signal 11, 425–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Russell, J. W. et al. Oxidative injury and neuropathy in diabetes and impaired glucose tolerance. Neurobiol. Dis. 30, 420–429 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vincent, A. M., Edwards, J. L., Sadidi, M. & Feldman, E. L. The antioxidant response as a drug target in diabetic neuropathy. Curr. Drug Targets 9, 94–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Vincent, A. M., Calabek, B., Roberts, L. & Feldman, E. L. Biology of diabetic neuropathy. Handb. Clin. Neurol. 115, 591–606 (2013).

    Article  PubMed  Google Scholar 

  63. Vincent, A. M., Russell, J. W., Low, P. & Feldman, E. L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 25, 612–628 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Fernyhough, P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr. Diab. Rep. 15, 89 (2015).

    Article  PubMed  CAS  Google Scholar 

  65. Fernyhough, P. & McGavock, J. Mechanisms of disease: mitochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handb. Clin. Neurol. 126, 353–377 (2014).

    Article  PubMed  Google Scholar 

  66. Chowdhury, S. K., Smith, D. R. & Fernyhough, P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol. Dis. 51, 56–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Rumora, A. E. et al. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J. 32, 195–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Singh, V. P., Bali, A., Singh, N. & Jaggi, A. S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 18, 1–14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Padilla, A., Descorbeth, M., Almeyda, A. L., Payne, K. & De Leon, M. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res. 1370, 64–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Legrand-Poels, S. et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem. Pharmacol. 92, 131–141 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Jang, E. R. & Lee, C. S. 7-Ketocholesterol induces apoptosis in differentiated PC12 cells via reactive oxygen species-dependent activation of NF-kappaB and Akt pathways. Neurochem. Int. 58, 52–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Vincent, A. M. et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 58, 2376–2385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nowicki, M. et al. Oxidized low-density lipoprotein (oxLDL)-induced cell death in dorsal root ganglion cell cultures depends not on the lectin-like oxLDL receptor-1 but on the toll-like receptor-4. J. Neurosci. Res. 88, 403–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Vincent, A. M. et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148, 548–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Keller, J. N., Hanni, K.B. & Markesbery, W. R. Oxidized low-density lipoprotein induces neuronal death: implications for calcium, reactive oxygen species, and caspases. J. Neurochem. 72, 2601–2609 (1999).

    Article  PubMed  Google Scholar 

  76. Cotter, M. A. & Cameron, N. E. Effect of the NAD(P)H oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats. Life Sci. 73, 1813–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, H., Kim, J. J. & Yoon, Y. S. Emerging therapy for diabetic neuropathy: cell therapy targeting vessels and nerves. Endocr. Metab. Immune Disord. Drug Targets 12, 168–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thrainsdottir, S. et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes 52, 2615–2622 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Nowicki, M., Kosacka, J., Serke, H., Bluher, M. & Spanel-Borowski, K. Altered sciatic nerve fiber morphology and endoneural microvessels in mouse models relevant for obesity, peripheral diabetic polyneuropathy, and the metabolic syndrome. J. Neurosci. Res. 90, 122–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Coppey, L. J. et al. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50, 1927–1937 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Schratzberger, P. et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J. Clin. Invest. 107, 1083–1092 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Frazier, W. A., Angeletti, R. H. & Bradshaw, R. A. Nerve growth factor and insulin. Science 176, 482–488 (1972).

    Article  CAS  PubMed  Google Scholar 

  83. Fernyhough, P., Willars, G. B., Lindsay, R. M. & Tomlinson, D. R. Insulin and insulin-like growth factor I enhance regeneration in cultured adult rat sensory neurones. Brain Res. 607, 117–124 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Brussee, V., Cunningham, F. A. & Zochodne, D. W. Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes 53, 1824–1830 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Sugimoto, K., Murakawa, Y., Zhang, W., Xu, G. & Sima, A. A. Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes Metab. Res. Rev. 16, 354–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Guo, G., Kan, M., Martinez, J. A. & Zochodne, D. W. Local insulin and the rapid regrowth of diabetic epidermal axons. Neurobiol. Dis. 43, 414–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Singhal, A., Cheng, C., Sun, H. & Zochodne, D. W. Near nerve local insulin prevents conduction slowing in experimental diabetes. Brain Res. 763, 209–214 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Kim, B., McLean, L. L., Philip, S. S. & Feldman, E. L. Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons. Endocrinology 152, 3638–3647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Singh, B. et al. Resistance to trophic neurite outgrowth of sensory neurons exposed to insulin. J. Neurochem. 121, 263–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Grote, C. W. et al. Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathol. Commun. 1, 15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Grote, C. W., Morris, J. K., Ryals, J. M., Geiger, P. C. & Wright, D. E. Insulin receptor substrate 2 expression and involvement in neuronal insulin resistance in diabetic neuropathy. Exp. Diabetes Res. 2011, 212571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abbott, C. A., Malik, R. A., van Ross, E. R., Kulkarni, J. & Boulton, A. J. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 34, 2220–2224 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. von Hehn, C. A., Baron, R. & Woolf, C. J. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73, 638–652 (2012).

    Article  CAS  Google Scholar 

  94. Hebert, H. L., Veluchamy, A., Torrance, N. & Smith, B. H. Risk factors for neuropathic pain in diabetes mellitus. Pain 158, 560–568 (2017).

    Article  PubMed  Google Scholar 

  95. Raputova, J. et al. Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study. Pain 158, 2340–2353 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Themistocleous, A. C. et al. The Pain in Neuropathy Study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain 157, 1132–1145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Suzuki, Y., Sato, J., Kawanishi, M. & Mizumura, K. Lowered response threshold and increased responsiveness to mechanical stimulation of cutaneous nociceptive fibers in streptozotocin-diabetic rat skin in vitro — correlates of mechanical allodynia and hyperalgesia observed in the early stage of diabetes. Neurosci. Res. 43, 171–178 (2002).

    Article  PubMed  Google Scholar 

  98. Garcia-Perez, E. et al. Behavioural, morphological and electrophysiological assessment of the effects of type 2 diabetes mellitus on large and small nerve fibres in Zucker diabetic fatty, Zucker lean and Wistar rats. Eur. J. Pain 22, 1457–1472 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Orstavik, K. et al. Abnormal function of C-fibers in patients with diabetic neuropathy. J. Neurosci. 26, 11287–11294 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Haroutounian, S. et al. Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain 155, 1272–1279 (2014).

    Article  PubMed  Google Scholar 

  101. Bennett, D. L. & Woods, C. G. Painful and painless channelopathies. Lancet Neurol. 13, 587–599 (2014). This review presents insights into pain mechanisms, diagnosis and treatment that have emanated from studies of heritable pain disorders.

    Article  CAS  PubMed  Google Scholar 

  102. Dubin, A. E. & Patapoutian, A. Nociceptors: the sensors of the pain pathway. J. Clin. Invest. 120, 3760–3772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Blair, N. T. & Bean, B. P. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J. Neurosci. 22, 10277–10290 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sun, W. et al. Reduced conduction failure of the main axon of polymodal nociceptive C-fibres contributes to painful diabetic neuropathy in rats. Brain 135, 359–375 (2012).

    Article  PubMed  Google Scholar 

  105. Bierhaus, A. et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med. 18, 926–933 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Hansen, C. S. et al. The role of serum methylglyoxal on diabetic peripheral and cardiovascular autonomic neuropathy: the ADDITION Denmark study. Diabet. Med. 32, 778–785 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Andersson, D. A. et al. Methylglyoxal evokes pain by stimulating TRPA1. PLOS ONE 8, e77986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Calvo, M. et al. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury. eLife 5, e12661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zenker, J. et al. Altered distribution of juxtaparanodal kv1.2 subunits mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus. J. Neurosci. 32, 7493–7498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Li, Q. S. et al. SCN9A variants may be implicated in neuropathic pain associated with diabetic peripheral neuropathy and pain severity. Clin. J. Pain 31, 976–982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blesneac, I. et al. Rare Nav1.7 variants associated with painful diabetic peripheral neuropathy. Pain 159, 469–480 (2017).

    PubMed Central  Google Scholar 

  113. Wadhawan, S. et al. NaV channel variants in patients with painful and nonpainful peripheral neuropathy. Neurol. Genet. 3, e207 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. McDonnell, A. et al. Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 159, 1465–1476 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Zakrzewska, J. M. et al. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: a double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet Neurol. 16, 291–300 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Orestes, P. et al. Reversal of neuropathic pain in diabetes by targeting glycosylation of CaV3.2T-type calcium channels. Diabetes 62, 3828–3838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Messinger, R. B. et al. In vivo silencing of the Ca(V)3.2T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145, 184–195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cooper, M. A. et al. Modulation of diet-induced mechanical allodynia by metabolic parameters and inflammation. J. Peripher. Nerv. Syst. 22, 39–46 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–15 (2011).

    Article  PubMed  Google Scholar 

  120. Tan, A. M. et al. Maladaptive dendritic spine remodeling contributes to diabetic neuropathic pain. J. Neurosci. 32, 6795–6807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Salter, M. W. & Beggs, S. Sublime microglia: expanding roles for the guardians of the CNS. Cell 158, 15–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Tsuda, M., Ueno, H., Kataoka, A., Tozaki-Saitoh, H. & Inoue, K. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia 56, 378–386 (2008).

    Article  PubMed  Google Scholar 

  123. Liao, Y. H. et al. Spinal astrocytic activation contributes to mechanical allodynia in a mouse model of type 2 diabetes. Brain Res. 1368, 324–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Wodarski, R., Clark, A. K., Grist, J., Marchand, F. & Malcangio, M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur. J. Pain 13, 807–811 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. West, S. J., Bannister, K., Dickenson, A. H. & Bennett, D. L. Circuitry and plasticity of the dorsal horn — toward a better understanding of neuropathic pain. Neuroscience 300, 254–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Marshall, A. G. et al. Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes 66, 1380–1390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Segerdahl, A. R., Themistocleous, A. C., Fido, D., Bennett, D. L. & Tracey, I. A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy. Brain 141, 357–364 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yarnitsky, D., Granot, M., Nahman-Averbuch, H., Khamaisi, M. & Granovsky, Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain 153, 1193–1198 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Cauda, F. et al. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci. 10, 138 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Selvarajah, D. et al. Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy. Diabetes Care 37, 1681–1688 (2014).

    Article  PubMed  Google Scholar 

  131. Vileikyte, L. & Gonzalez, J. S. Recognition and management of psychosocial issues in diabetic neuropathy. Handb. Clin. Neurol. 126, 195–209 (2014).

    Article  PubMed  Google Scholar 

  132. Sieberg, C. B. et al. Neuropathic pain drives anxiety behavior in mice, results consistent with anxiety levels in diabetic neuropathy patients. Pain Rep. 3, e651 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tesfaye, S. et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33, 2285–2293 (2010). This update presents the results of the October 2009 Toronto Diabetic Neuropathy Expert Group discussion on the classification, definition, diagnostic criteria and treatments of diabetic peripheral, autonomic and painful neuropathies.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Divisova, S. et al. Prediabetes/early diabetes-associated neuropathy predominantly involves sensory small fibres. J. Peripher. Nerv. Syst. 17, 341–350 (2012).

    Article  PubMed  Google Scholar 

  135. Bril, V. & Perkins, B. A. Validation of the Toronto Clinical Scoring System for diabetic polyneuropathy. Diabetes Care 25, 2048–2052 (2002).

    Article  PubMed  Google Scholar 

  136. Bril, V., Tomioka, S., Buchanan, R. A. & Perkins, B. A., the mTCNS Study Group. Reliability and validity of the modified Toronto Clinical Neuropathy Score in diabetic sensorimotor polyneuropathy. Diabet. Med. 26, 240–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Feldman, E. L. et al. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care 17, 1281–1289 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Dyck, P. J. et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab. Res. Rev. 27, 620–628 (2011).

    Article  PubMed  Google Scholar 

  139. Weisman, A. et al. Identification and prediction of diabetic sensorimotor polyneuropathy using individual and simple combinations of nerve conduction study parameters. PLOS ONE 8, e58783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Singleton, J. R. et al. The Utah Early Neuropathy Scale: a sensitive clinical scale for early sensory predominant neuropathy. J. Peripher. Nerv. Syst. 13, 218–227 (2008).

    Article  PubMed  Google Scholar 

  141. Andersson, C., Guttorp, P. & Sarkka, A. Discovering early diabetic neuropathy from epidermal nerve fiber patterns. Stat. Med. 35, 4427–4442 (2016).

    Article  PubMed  Google Scholar 

  142. Devigili, G. et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 131, 1912–1925 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Jensen, T. S., Bach, F. W., Kastrup, J., Dejgaard, A. & Brennum, J. Vibratory and thermal thresholds in diabetics with and without clinical neuropathy. Acta Neurol. Scand. 84, 326–333 (1991).

    Article  CAS  PubMed  Google Scholar 

  144. Krishnan, S. T. & Rayman, G. The LDIflare: a novel test of C-fiber function demonstrates early neuropathy in type 2 diabetes. Diabetes Care 27, 2930–2935 (2004).

    Article  PubMed  Google Scholar 

  145. Sivaskandarajah, G. A. et al. Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care 36, 2748–2755 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Breiner, A., Lovblom, L. E., Perkins, B. A. & Bril, V. Does the prevailing hypothesis that small-fiber dysfunction precedes large-fiber dysfunction apply to type 1 diabetic patients? Diabetes Care 37, 1418–1424 (2014).

    Article  PubMed  Google Scholar 

  147. Yang, W., Cai, X. L., Wu, H. & Ji, L. Associations between metformin use and vitamin B12 level, anemia and neuropathy in patients with diabetes: a meta-analysis. J. Diabetes. https://doi.org/10.1111/1753-0407.12900 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. England, J. D. et al. Practice parameter: the evaluation of distal symmetric polyneuropathy: the role of laboratory and genetic testing (an evidence-based review). Report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. PM R. 1, 5–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Diabetes Canada Clinical Practice Guidelines Expert Committee, Bril, V., Breiner, A., Perkins, B. A. & Zochodne, D. Neuropathy. Can. J. Diabetes 42 (Suppl. 1), S217–S221 (2018).

    Google Scholar 

  152. Olaleye, D., Perkins, B. A. & Bril, V. Evaluation of three screening tests and a risk assessment model for diagnosing peripheral neuropathy in the diabetes clinic. Diabetes Res. Clin. Pract. 54, 115–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Perkins, B. A., Olaleye, D., Zinman, B. & Bril, V. Simple screening tests for peripheral neuropathy in the diabetes clinic. Diabetes Care 24, 250–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Perkins, B. A. et al. Prediction of incident diabetic neuropathy using the monofilament examination: a 4-year prospective study. Diabetes Care 33, 1549–1554 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Boulton, A. J. et al. Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. Diabetes Care 31, 1679–1685 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kanji, J. N., Anglin, R. E., Hunt, D. L. & Panju, A. Does this patient with diabetes have large-fiber peripheral neuropathy? JAMA 303, 1526–1532 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Beghi, E., Treviso, M., Ferri, P. & Di Mascio, R. Diagnosis of diabetic polyneuropathy. Correlation between clinical and instrumental findings and assessment of simple diagnostic criteria. Ital. J. Neurol. Sci. 9, 577–582 (1988).

    Article  CAS  PubMed  Google Scholar 

  158. Herman, W. H. et al. Use of the Michigan Neuropathy Screening Instrument as a measure of distal symmetrical peripheral neuropathy in type 1 diabetes: results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications. Diabet Med. 29, 937–944 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Callaghan, B. C., Little, A. A., Feldman, E. L. & Hughes, R. A. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst. Rev. 6, CD007543 (2012). This analysis of clinical studies evaluating the impact of glycaemic control on neuropathy outcomes in T1DM and T2DM reveals that enhanced glucose control significantly attenuates neuropathy development in T1DM but not in T2DM.

    Google Scholar 

  160. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article  Google Scholar 

  161. Duckworth, W. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360, 129–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Ismail-Beigi, F. et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 376, 419–430 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Charles, M. et al. Prevalence of neuropathy and peripheral arterial disease and the impact of treatment in people with screen-detected type 2 diabetes: the ADDITION-Denmark study. Diabetes Care 34, 2244–2249 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Singleton, J. R. et al. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann. Clin. Transl Neurol. 1, 844–849 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Muller-Stich, B. P. et al. Gastric bypass leads to improvement of diabetic neuropathy independent of glucose normalization—results of a prospective cohort study (DiaSurg 1 study). Ann. Surg. 258, 760–765 (2013).

    Article  PubMed  Google Scholar 

  166. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  Google Scholar 

  167. Qaseem, A. et al. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American College of Physicians. Ann. Intern. Med. 168, 569–576 (2018).

    Article  PubMed  Google Scholar 

  168. Ziegler, D., Behler, M., Schroers-Teuber, M. & Roden, M. Near-normoglycaemia and development of neuropathy: a 24-year prospective study from diagnosis of type 1 diabetes. BMJ Open 5, e006559 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Dahl-Jorgensen, K. et al. Effect of near normoglycaemia for two years on progression of early diabetic retinopathy, nephropathy, and neuropathy: the Oslo study. Br. Med. J. (Clin. Res. Ed) 293, 1195–1199 (1986).

    Article  CAS  Google Scholar 

  170. Ohkubo, Y. et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28, 103–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Ishibashi, F., Taniguchi, M., Kosaka, A., Uetake, H. & Tavakoli, M. Improvement in neuropathy outcomes with normalizing HbA1c in patients with type 2 diabetes. Diabetes Care 42, 110–118 (2018).

    Article  PubMed  Google Scholar 

  172. Balducci, S. et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J. Diabetes Complicat. 20, 216–223 (2006).

    Article  Google Scholar 

  173. Kluding, P. M. et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J. Diabetes Complicat. 26, 424–429 (2012).

    Article  Google Scholar 

  174. Singleton, J. R., Marcus, R. L., Lessard, M. K., Jackson, J. E. & Smith, A. G. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients. Ann. Neurol. 77, 146–153 (2015).

    Article  PubMed  Google Scholar 

  175. Smith, A. G. et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 29, 1294–1299 (2006).

    Article  PubMed  Google Scholar 

  176. Ziegler, D. et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-lipoic acid in diabetic neuropathy. Diabetes Care 22, 1296–1301 (1999).

    Article  CAS  PubMed  Google Scholar 

  177. Ziegler, D. et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 29, 2365–2370 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Ziegler, D. et al. Efficacy and safety of antioxidant treatment with alpha-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care 34, 2054–2060 (2011). This multicentre, randomized, double-blind, parallel-group trial of α-lipoic acid in 460 individuals with diabetes and neuropathy does not meet the primary composite end point. There is a beneficial effect in the α-lipoic-acid-treated cohort on secondary end points, including the NIS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Balakumar, P., Rohilla, A., Krishan, P., Solairaj, P. & Thangathirupathi, A. The multifaceted therapeutic potential of benfotiamine. Pharmacol. Res. 61, 482–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Zilliox, L. & Russell, J. W. Treatment of diabetic sensory polyneuropathy. Curr. Treat. Options Neurol. 13, 143–159 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Stracke, H., Gaus, W., Achenbach, U., Federlin, K. & Bretzel, R. G. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp. Clin. Endocrinol. Diabetes 116, 600–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Fraser, D. A. et al. The effects of long-term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes: a 24-month, double-blind, randomized, placebo-controlled trial. Diabetes Care 35, 1095–1097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lewis, E. J. H. et al. Effect of omega-3 supplementation on neuropathy in type 1 diabetes: a 12-month pilot trial. Neurology 88, 2294–2301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hotta, N. et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care 29, 1538–1544 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Attal, N. et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur. J. Neurol. 17, 1113–e88 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Bril, V. et al. Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 76, 1758–1765 (2011). This article presents an evidenced-based guideline for the treatment of painful diabetic neuropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Finnerup, N. B. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 14, 162–173 (2015). This systematic review and meta-analysis provides support for a revision to the NeuPSIG recommendations for the treatment of neuropathic pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Griebeler, M. L. et al. Pharmacologic interventions for painful diabetic neuropathy: An umbrella systematic review and comparative effectiveness network meta-analysis. Ann. Intern. Med. 161, 639–649 (2014).

    Article  PubMed  Google Scholar 

  189. Waldfogel, J. M. et al. Pharmacotherapy for diabetic peripheral neuropathy pain and quality of life: a systematic review. Neurology 88, 1958–1967 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Callaghan, B. C. & Feldman, E. L. Painful diabetic neuropathy: many similarly effective therapies with widely dissimilar costs. Ann. Intern. Med. 161, 674–675 (2014).

    Article  PubMed  Google Scholar 

  191. Backonja, M. & Glanzman, R. L. Gabapentin dosing for neuropathic pain: evidence from randomized, placebo-controlled clinical trials. Clin. Ther. 25, 81–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Freeman, R., Durso-Decruz, E. & Emir, B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a range of doses. Diabetes Care 31, 1448–1454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Moore, R. A., Straube, S., Wiffen, P. J., Derry, S. & McQuay, H. J. Pregabalin for acute and chronic pain in adults. Cochrane Database Syst. Rev. 8, CD007076 (2009).

    Google Scholar 

  194. Ziegler, D., Duan, W. R., An, G., Thomas, J. W. & Nothaft, W. A randomized double-blind, placebo-, and active-controlled study of T-type calcium channel blocker ABT-639 in patients with diabetic peripheral neuropathic pain. Pain 156, 2013–2020 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Quilici, S. et al. Meta-analysis of duloxetine versus pregabalin and gabapentin in the treatment of diabetic peripheral neuropathic pain. BMC Neurol. 9, 6 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Raskin, P. et al. Pregabalin in patients with inadequately treated painful diabetic peripheral neuropathy: a randomized withdrawal trial. Clin. J. Pain 30, 379–390 (2014).

    PubMed  Google Scholar 

  197. Dworkin, R. H., Jensen, M. P., Gammaitoni, A. R., Olaleye, D. O. & Galer, B. S. Symptom profiles differ in patients with neuropathic versus non-neuropathic pain. J. Pain 8, 118–126 (2007).

    Article  PubMed  Google Scholar 

  198. Goldstein, D. J., Lu, Y., Detke, M. J., Lee, T. C. & Iyengar, S. Duloxetine versus placebo in patients with painful diabetic neuropathy. Pain 116, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Tesfaye, S. et al. Duloxetine and pregabalin: High-dose monotherapy or their combination? The “COMBO-DN study” - a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain 154, 2616–2625 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Wernicke, J. F. et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology 67, 1411–1420 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Zilliox, L. & Russell, J. W. Maintaining efficacy in the treatment of diabetic peripheral neuropathic pain: role of duloxetine. Diabetes Metab. Syndr. Obes. 3, 7–17 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rowbotham, M. C., Goli, V., Kunz, N. R. & Lei, D. Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study. Pain 110, 697–706 (2004).

    Article  CAS  PubMed  Google Scholar 

  203. Sindrup, S. H., Bach, F. W., Madsen, C., Gram, L. F. & Jensen, T. S. Venlafaxine versus imipramine in painful polyneuropathy: a randomized, controlled trial. Neurology 60, 1284–1289 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Boyle, J. et al. Randomized, placebo-controlled comparison of amitriptyline, duloxetine, and pregabalin in patients with chronic diabetic peripheral neuropathic pain: impact on pain, polysomnographic sleep, daytime functioning, and quality of life. Diabetes Care 35, 2451–2458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Max, M. B. et al. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology 37, 589–596 (1987).

    Article  CAS  PubMed  Google Scholar 

  206. Max, M. B. et al. Efficacy of desipramine in painful diabetic neuropathy: a placebo-controlled trial. Pain 45, 3–9 (1991).

    Article  CAS  PubMed  Google Scholar 

  207. Max, M. B. et al. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N. Engl. J. Med. 326, 1250–1256 (1992).

    Article  CAS  PubMed  Google Scholar 

  208. Derry, S., Wiffen, P. J., Aldington, D. & Moore, R. A. Nortriptyline for neuropathic pain in adults. Cochrane Database Syst. Rev. 1, CD011209 (2015).

    PubMed  Google Scholar 

  209. Dowell, D., Haegerich, T. M. & Chou, R. CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA 315, 1624–1645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Franklin, G. M. Opioids for chronic noncancer pain: a position paper of the American Academy of Neurology. Neurology 83, 1277–1284 (2014). This article reviews the safety and efficacy evidence, state and federal policies and recommendations for practising neurologists regarding safe and effective opioid use in chronic pain conditions.

    Article  CAS  PubMed  Google Scholar 

  211. Schwartz, S. et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial. Curr. Med. Res. Opin. 27, 151–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Vinik, A. I. et al. A randomized withdrawal, placebo-controlled study evaluating the efficacy and tolerability of tapentadol extended release in patients with chronic painful diabetic peripheral neuropathy. Diabetes Care 37, 2302–2309 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Raffa, R. B. et al. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J. Pharmacol. Exp. Ther. 260, 275–285 (1992).

    CAS  PubMed  Google Scholar 

  214. Harati, Y. et al. Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology 50, 1842–1846 (1998).

    Article  CAS  PubMed  Google Scholar 

  215. Freeman, R. et al. Randomized study of tramadol/acetaminophen versus placebo in painful diabetic peripheral neuropathy. Curr. Med. Res. Opin. 23, 147–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  216. Harati, Y. et al. Maintenance of the long-term effectiveness of tramadol in treatment of the pain of diabetic neuropathy. J. Diabetes Complicat. 14, 65–70 (2000).

    Article  CAS  Google Scholar 

  217. Gimbel, J. S., Richards, P. & Portenoy, R. K. Controlled-release oxycodone for pain in diabetic neuropathy: a randomized controlled trial. Neurology 60, 927–934 (2003).

    Article  CAS  PubMed  Google Scholar 

  218. Watson, C. P., Moulin, D., Watt-Watson, J., Gordon, A. & Eisenhoffer, J. Controlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy. Pain 105, 71–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  219. Jalal, H. et al. Changing dynamics of the drug overdose epidemic in the United States from 1979 through 2016. Science 361, eaau1184 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  220. Fisher, L., Hessler, D. M., Polonsky, W. H. & Mullan, J. When is diabetes distress clinically meaningful?: establishing cut points for the Diabetes Distress Scale. Diabetes Care 35, 259–264 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Callaghan, B. et al. Longitudinal patient-oriented outcomes in neuropathy: Importance of early detection and falls. Neurology 85, 71–79 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Van Acker, K. et al. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab. 35, 206–213 (2009).

    Article  PubMed  Google Scholar 

  223. Ind, I. S. G. Burden of neuropathic pain in Indian patients attending urban, specialty clinics: results from a cross sectional study. Pain Pract. 8, 362–378 (2008).

    Article  Google Scholar 

  224. Trikkalinou, A., Papazafiropoulou, A. K. & Melidonis, A. Type 2 diabetes and quality of life. World J. Diabetes 8, 120–129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Benbow, S. J., Wallymahmed, M. E. & MacFarlane, I. A. Diabetic peripheral neuropathy and quality of life. QJM 91, 733–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  226. Meyer-Rosberg, K. et al. Peripheral neuropathic pain — a multidimensional burden for patients. Eur. J. Pain 5, 379–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  227. Amalraj, M. J., Anitha Rani, A. & Viswanathan, V. A study on positive impact of intensive psychological counseling on psychological well-being of type 2 diabetic patients undergoing amputation. Int. J. Psychol. Couns. 9, 10–16 (2017).

    Google Scholar 

  228. Thorn, B. E. et al. Literacy-adapted cognitive behavioral therapy versus education for chronic pain at low-income clinics: a randomized controlled trial. Ann. Intern. Med. 168, 471–480 (2018).

    Article  PubMed  Google Scholar 

  229. Freeman, R. Diabetic autonomic neuropathy. Handb. Clin. Neurol. 126, 63–79 (2014).

    Article  PubMed  Google Scholar 

  230. Peltier, A., Goutman, S. A. & Callaghan, B. C. Painful diabetic neuropathy. BMJ 348, g1799 (2014).

    Article  PubMed  Google Scholar 

  231. Tesfaye, S., Boulton, A. J. M. & Dickenson, A. H. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care 36, 2456–2465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lauria, G. & Devigili, G. Skin biopsy as a diagnostic tool in peripheral neuropathy. Nat. Clin. Pract. Neurol. 3, 546–557 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

E.L.F. acknowledges support from the NIH (R24DK082841 and R01D107956) and the NovoNordisk Foundation (NNF14OC0011633). B.C.C. acknowledges support from the NIH (K23NS079417 and R01DK115687) and a VA Clinical Science Research and Development (CSRD) Merit (CX001504). R.P.B. acknowledges support from the NIH (R01D107956). D.W.Z. acknowledges support from the Canadian Institutes of Health Research (RN192747-298730) and Diabetes Canada (RN271389-OG-3-15-5025-DZ). D.E.W. acknowledges support from the NIH (R01NS0433314-14). D.L.B. acknowledges support from the NovoNordisk Foundation (NNF14OC0011633) and the Wellcome Trust (102645/Z/13/Z, 202747/Z/16/Z) and is a member of the DOLORisk Consortium funded by the European Commission Horizon 2020 (ID633491). J.W.R. acknowledges support from the NIH (R01DK107007), the US Department of Veterans Affairs (101RX001030), the Diabetes Action Research and Education Foundation and the Baltimore Geriatric Research Education and Clinical Center (GRECC). The authors thank S. Sakowski Jacoby for manuscript preparation and editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (E.L.F.); Epidemiology (B.C.C. and E.L.F.); Diagnosis, screening and prevention (B.C.C. and V.B.); Mechanisms/pathophysiology of diabetic neuropathy (D.W.Z., D.E.W. and E.L.F.); Mechanisms/pathophysiology of pain (D.L.B.); Management (R.P.-B., J.W.R. and E.L.F.); Quality of life (V.V.); Outlook (E.L.F.); Overview of the Primer (E.L.F.).

Corresponding author

Correspondence to Eva L. Feldman.

Ethics declarations

Competing interests

B.C.C. consults for a Patient-Centered Outcomes Research Institute (PCORI) grant, the Immune Tolerance Network and DynaMed and performs medical legal consultations. D.L.B. has undertaken consultancy work on behalf of Oxford Innovation for Abide, Biogen, GSK, Lilly, Mitsubishi Tanabe, Mundipharma, Teva and Theranexus. All other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, E.L., Callaghan, B.C., Pop-Busui, R. et al. Diabetic neuropathy. Nat Rev Dis Primers 5, 41 (2019). https://doi.org/10.1038/s41572-019-0092-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0092-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing