Abstract
The kainate subtype of glutamate receptors has received considerable attention in recent years, and a wealth of knowledge has been obtained regarding the function of these receptors. Kainate receptors have been shown to mediate synaptic transmission in some brain regions, modulate presynaptic release of glutamate and γ-aminobutyric acid (GABA), and mediate synaptic plasticity or the development of seizure activity. This article focuses on the function of kainate receptors in the amygdala, a brain region that plays a central role in emotional behavior and certain psychiatric illnesses. Evidence is reviewed indicating that postsynaptic kainate receptors containing the glutamate receptor 5 kainate receptor (GLUk5) subunit are present on interneurons and pyramidal cells in the basolateral amygdala and mediate a component of the synaptic responses of these neurons to glutamatergic input. In addition, GLUk5-containing kainate receptors are present on presynaptic terminals of GABAergic neurons, where they modulate the release of GABA in an agonist concentration-dependent, bidirectional manner. GLUk5-containing kainate receptors also mediate a longlasting synaptic facilitation induced by low-frequency stimulation in the external capsule to the basolateral nucleus pathway, and they appear to be party responsible for the susceptibility of the amygdala to epileptogenesis. Taken together, these findings have suggested a prominent role of GLUk5-containing kainate receptors in the regulation of neuronal excitability in the amygdala.
Similar content being viewed by others
References
Huettner J. E. (2003). Kainate receptors and synaptic transmission. Prog. Neurobiol. 70, 387–407.
Lerma J. (2003). Roles and rules of kainate receptors in synaptic transmission. Nat. Rev. Neurosci. 4, 481–495.
Bettler B., Boulter J., Hermans-Borgmeyer I., et al. (1990). Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583–595.
Sommer B., Burnashev N., Verdoorn T. A., Keinanen K., Sakmann B., Seeburg P. H. (1992). A glutamate receptor channel with high affinity for domoate and kainate. EMBO J. 11, 1651–1656.
Egebjerg J., Heinemann S. F. (1993). Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc. Natl. Acad. Sci. USA 90, 755–759.
Schiffer H. H., Swanson G. T., Heinemann S. F. (1997). Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141–1146.
Cui C., Mayer M. L. (1999). Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7. J. Neurosci. 19, 8281–8291.
Paternain A. V., Herrera M. T., Nieto M. A., Lerma J. (2000). GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J. Neurosci. 20, 196–205.
Herb A., Burnashev N., Werner P., Sakmann B., Wisden W., Seeburg P. H. (1992). The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775–785.
Sakimura K., Morita T., Kushiya E., Mishina M. (1992). Primary structure and expression of the gamma 2 subunit of the glutamate receptor channel selective for kainate. Neuron 8, 267–274.
Hollmann M., Heinemann S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.
Gregor P., O’Hara B. F., Yang X., Uhl G. R. (1993). Expression and novel subunit isoforms of glutamate receptor genes GluR5 and GluR6. Neuroreport 4, 1343–1346.
Herb A., Higuchi M., Sprengel R., Seeburg P. H. (1996). Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc. Natl. Acad. Sci. USA 93, 1875–1880.
Sommer B., Kohler M., Sprengel R., Seeburg P. H. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19.
Burnashev N., Zhou Z., Neher E., Sakmann B. (1995). Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485(pt 2), 403–418.
Bowie D., Mayer M. L. (1995). Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462.
Kamboj S. K., Swanson G. T., Cull-Candy S. G. (1995). Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. 486(pt 2), 297–303.
Donevan S. D., Rogawski M. A. (1995). Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc. Natl. Acad. Sci. USA 92, 9298–9302.
Koh D. S., Burnashev N., Jonas P. (1995). Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. 486(pt 2), 305–312.
Bahring R., Bowie D., Benveniste M., Mayer M. L. (1997). Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines. J. Physiol. 502(pt 3), 575–589.
Kohler M., Burnashev N., Sakmann B., Seeburg P. H. (1993). Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500.
Castillo P. E., Malenka R. C., Nicoll R. A. (1997). Kainate receptors mediate a slow post-synaptic current in hippocampal CA3 neurons. Nature 388, 182–186.
Vignes M., Bleakman D., Lodge D., Collingridge G. L. (1997). The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus. Neuropharmacology 36, 1477–1481.
Cossart R., Esclapez M., Hirsch J. C., Bernard C., Ben Ari Y. (1998). GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat. Neurosci. 1, 470–478.
Li H., Rogawski M. A. (1998). GluR5 kainate receptor mediated synaptic transmission in rat basolateral amygdala in vitro. Neuropharmacology 37, 1279–1286.
Kidd F. L., Isaac J. T. (1999). Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400, 569–573.
Frerking M., Nicoll R. A. (2000). Synaptic kainate receptors. Curr. Opin. Neurobiol. 10, 342–351.
Kullmann D. M. (2001). Presynaptic kainate receptors in the hippocampus: slowly emerging from obscurity. Neuron 32, 561–564.
Kullmann D. M. (2001). Presynaptic kainate receptors in the hippocampus. Slowly emerging from obscurity. Neuron 32, 561–564.
Wisden W., Seeburg P. H. (1993). A complex mosaic of high-affinity kainate receptors in rat brain. J. Neurosci. 13, 3582–3598.
LeDoux J. E. (1992). Brain mechanisms of emotion and emotional learning. Curr. Opin. Neurobiol. 2, 191–197.
Davis M. (1994). The role of the amygdala in emotional learning. Int. Rev. Neurobiol. 36, 225–266.
Schneider F., Grodd W., Weiss U., et al. (1997). Functional MRI reveals left amygdala activation during emotion. Psychiatry Res. 76, 75–82.
Davidson R. J., Abercrombie H., Nitschke J. B., Putnam K. (1999). Regional brain function, emotion and disorders of emotion. Curr. Opin. Neurobiol. 9, 228–234.
Goldstein L. E., Rasmusson A. M., Bunney B. S., Roth R. H. (1996). Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J. Neurosci. 16, 4787–4798.
Habib K. E., Gold P. W., Chrousos G. P. (2001). Neuroendocrinology of stress. Endocrinol. Metab. Clin. N. Am. 30, 695–728.
Davis M. (1992). The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375.
Abercrombie H. C., Schaefer S. M., Larson C. L., et al. (1998). Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport 9, 3301–3307.
Drevets W. C. (1999). Prefrontal cortical-amygdalar metabolism in major depression. Ann. NY Acad. Sci. 877, 614–637.
Davidson R. J., Slagter H. A. (2000). Probing emotion in the developing brain, functional neuroimaging in the assessment of the neural substrates of emotion in normal and disordered children and adolescents. Ment. Retard. Dev. Disabil. Res. Rev. 6, 166–170.
Rauch S. L., Whalen P. J., Shin L. M., et al. (2000). Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder, a functional MRI study. Biol. Psychiatry 47, 769–776.
Rauch S. L., Shin L. M., Wright C. I. (2003). Neuroimaging studies of amygdala function in anxiety disorders. Ann. NY Acad. Sci. 985, 389–410.
Rogawski M. A., Gryder D., Castaneda D., Yonekawa W., Banks M. K., Li H. (2003). GluR5 kainate receptors, seizures, and the amygdala. Ann. NY Acad. Sci. 985, 150–162.
McDonald A. J. (2003). Is there an amygdala and how far does it extend? An anatomical perspective. Ann. NY Acad. Sci. 985, 1–21.
Sah P., Faber E. S., Lopez D. A., Power J. (2003). The amygdaloid complex, anatomy and physiology. Physiol. Rev. 83, 803–834.
Rainnie D. G., Asprodini E. K., Shinnick-Gallagher P. (1992). Kindling-induced long-lasting changes in synaptic transmission in the basolateral amygdala. J. Neurophysiol. 67, 443–454.
Gean P. W., Chang F. C. (1992). Pharmacological characterization of excitatory synaptic potentials in rat basolateral amygdaloid neurons. Synapse 11, 1–9.
Farb C. R., Aoki C., LeDoux J. E. (1995). Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala, a light and electron microscopic study. J. Comp. Neurol. 362, 86–108.
Li X. F., Phillips R., LeDoux J. E. (1995). NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp. Brain Res. 105, 87–100.
Neugebauer V., Keele N. B., Shinnick-Gallagher P. (1997). Epileptogenesis in vivo enhances the sensitivity of inhibitory presynaptic metabotropic glutamate receptors in basolateral amygdala neurons in vitro. J. Neurosci. 17, 983–995.
Li H., Weiss S. R., Chuang D. M., Post R. M., Rogawski M. A. (1998). Bidirectional synaptic plasticity in the rat basolateral amygdala: characterization of an activity-dependent switch sensitive to the presynaptic metabotropic glutamate receptor antagonist 2S-alpha-ethylglutamic acid. J. Neurosci. 18, 1662–1670.
Li H., Chen A., Xing G., Wei M. L., Rogawski M. A. (2001). Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Nat. Neurosci. 4, 612–620.
Braga M. F., Aroniadou-Anderjaska V., Xie J., Li H. (2003). Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J. Neurosci. 23, 442–452.
Vignes M., Collingridge G. L. (1997). The synaptic activation of kainate receptors. Nature 388, 179–182.
Wilding T. J., Huettner J. E. (1995). Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol. Pharmacol. 47, 582–587.
Paternain A. V., Morales M., Lerma J. (1995). Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189.
Bleakman R., Schoepp D. D., Ballyk B., et al. (1996). Pharmacological discrimination of GluR5 and GluR6 kainate receptor subtypes by (3S,4a R, 6R, 8a R)-6-[2-(1 (2) H-tetrazole-5-yl)ethyl]decahyd roisdoquinoline-3 carboxylicacid. Mol. Pharmacol. 49, 581–585.
Bureau I., Dieudonne S., Coussen F., Mulle C. (2000). Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc. Natl. Acad. Sci. USA 97, 6838–6843.
Li P., Wilding T. J., Kim S. J., Calejesan A. A., Huettner J. E., Zhuo M. (1999). Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161–164.
Gryder D. S., Rogawski M. A. (2003). Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J. Neurosci. 23, 7069–7074.
Liu Q. S., Patrylo P. R., Gao X. B., van den Pol A. N. (1999). Kainate acts at presynaptic receptors to increase GABA release from hypothalamic neurons. J. Neurophysiol. 82, 1059–1062.
Cossart R., Tyzio R., Dinocourt C., et al. (2001). Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron 29, 497–508.
Contractor A., Swanson G., Heinemann S. F. (2001). Kainate receptors are involved in short-and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29, 209–216.
Schmitz D., Mellor J., Frerking M., Nicoll R. A. (2001). Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. USA 98, 11,003–11,008.
Chittajallu R., Braithwaite S. P., Clarke V. R., Henley J. M. (1999). Kainate receptors, subunits, synaptic localization and function. Trends Pharmacol. Sci. 20, 26–35.
Mulle C., Sailer A., Swanson G. T., et al. (2000). Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28, 475–484.
Semyanov A., Kullmann D. M. (2001). Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons. Nat. Neurosci. 4, 718–723.
Cunha R. A., Malva J. O., Ribeiro J. A. (2000). Pertussis toxin prevents presynaptic inhibition by kainate receptors of rat hippocampal [(3)H]GABA release. FEBS Lett. 469, 159–162.
Rodriguez-Moreno A., Lerma J. (1998). Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20, 1211–1218.
Fanselow M. S., Gale G. D. (2003). The amygdala, fear, and memory. Ann. NY Acad. Sci. 985, 125–134.
Teyler T. J., DiScenna P. (1987). Long-term potentiation. Annu. Rev. Neurosci. 10, 131–161.
Gustafsson B., Wigstrom H. (1988). Physiological mechanisms underlying long-term potentiation. Trends Neurosci. 11, 156–162.
Nicoll R. A., Kauer J. A., Malenka R. C. (1988). The current excitement in long-term potentiation. Neuron 1, 97–103.
Madison D. V., Malenka R. C., Nicoll R. A. (1991). Mechanisms underlying long-term potentiation of synaptic transmission. Annu. Rev. Neurosci. 14, 379–397.
Bliss T. V., Collingridge G. L. (1993). A synaptic model of memory, long-term potentiation in the hippocampus. Nature 361, 31–39.
Nicoll R. A., Malenka R. C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118.
Lynch G., Larson J., Kelso S., Barrionuevo G., Schottler F. (1983). Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721.
Mulkey R. M., Malenka R. C. (1992). Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975.
Teyler T. J., Cavus I., Coussens C., et al. (1994). Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus 4, 623–634.
Chittajallu R., Alford S., Collingridge G. L. (1998). Ca2+ and synaptic plasticity. Cell Calcium 24, 377–385.
Kemp N., Bashir Z. I. (2001). Long-term depression, a cascade of induction and expression mechanisms. Prog. Neurobiol. 65, 339–365.
Collingridge G. L., Kehl S. J., McLennan H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol 334, 33–46.
Muller D., Joly M., Lynch G. (1988). Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1697.
Malenka R. C., Nicoll R. A. (1993). NMDA-receptor-dependent synaptic plasticity, multiple forms and mechanisms. Trends Neurosci. 16, 521–527.
Kullmann D. M., Siegelbaum S. A. (1995). The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15, 997–1002.
Malenka R. C., Nicoll R. A. (1999). Long-term potentiation—a decade of progress? Science 285, 1870–1874.
Kemp N., McQueen J., Faulkes S., Bashir Z. I. (2000). Different forms of LTD in the CA1 region of the hippocampus, role of age and stimulus protocol. Eur. J. Neurosci. 12, 360–366.
Grover L. M., Teyler T. J. (1990). Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347, 477–479.
Morgan S. L., Teyler T. J. (1999). VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J. Neurophysiol. 82, 736–740.
Aroniadou V. A., Teyler T. J. (1992). Induction of NMDA receptor-independent long-term potentiation (LTP) in visual cortex of adult rats. Brain Res. 584, 169–173.
Aroniadou V. A., Maillis A., Stefanis C. C. (1993). Dihydropyridine-sensitive calcium channels are involved in the induction of N-methyl-d-aspartate receptor-independent long-term potentiation in visual cortex of adult rats. Neurosci. Lett. 151, 77–80.
Bortolotto Z. A., Clarke V. R., Delany C. M., et al. (1999). Kainate receptors are involved in synaptic plasticity. Nature 402, 297–301.
Aroniadou-Anderjaska V., Post R. M., Rogawski M. A., Li H. (2001). Input-specific LTP and depotentiation in the basolateral amygdala. Neuroreport 12, 635–640.
Rammes G., Steckler T., Kresse A., Schutz G., Zieglgansberger W., Lutz B. (2000). Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. Eur. J. Neurosci. 12, 2534–2546.
Rogan M. T., Staubli U. V., LeDoux J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607.
Maren S. (1999). Long-term potentiation in the amygdala, a mechanism for emotional learning and memory. Trends Neurosci. 22, 561–567.
Huang Y. Y., Kandel E. R. (1998). Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21, 169–178.
Weisskopf M. G., Bauer E. P., LeDoux J. E. (1999). l-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19, 10,512–10,519.
Mahanty N. K., Sah P. (1998). Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394, 683–687.
Wang S. J., Gean P. W. (1999). Long-term depression of excitatory synaptic transmission in the rat amygdala. J. Neurosci. 19, 10,656–10,663.
Jones K. A., Wilding T. J., Huettner J. E., Costa A. M. (1997). Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Neuropharmacology 36, 853–863.
Chapman P. F. (2001). The diversity of synaptic plasticity. Nat. Neurosci. 4, 556–558.
Aggleton J. P. (2000). The Amygdala, A Functional Analysis, 2nd ed. Oxford University Press, Oxford.
Braga M. F. M., Li H., Rogawski M. A. (2003). Topiramate enhances GABAergic transmission and blocks GluR5 kainate receptors in basolateral amygdala interneurons. Soc. Neurosci. Abs. 33, 582.15.
Vieta E., Sanchez-Moreno J., Goikolea J. M., et al. (2003). Adjunctive topiramate in bipolar II disorder. World J. Biol. Psychiatry 4(4), 172–176.
Sachs G. S. (2003). Decision tree for the treatment of bipolar disorder. J. Clin. Psychiatry 64(Suppl 8), 35–40.
Deutsch S. I., Schwartz B. L., Rosse R. B., Mastropaolo J., Marvel C. L., Drapalski A. L. (2003). Adjuvant topiramate administration, a pharmacologic strategy for addressing NMDA receptor hypofunction in schizophrenia. Clin. Neuropharmacol. 26(4), 199–206.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Braga, M.F.M., Aroniadou-Anderjaska, V. & Li, H. The physiological role of kainate receptors in the amygdala. Mol Neurobiol 30, 127–141 (2004). https://doi.org/10.1385/MN:30:2:127
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1385/MN:30:2:127