Skip to main content
Log in

The physiological role of kainate receptors in the amygdala

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The kainate subtype of glutamate receptors has received considerable attention in recent years, and a wealth of knowledge has been obtained regarding the function of these receptors. Kainate receptors have been shown to mediate synaptic transmission in some brain regions, modulate presynaptic release of glutamate and γ-aminobutyric acid (GABA), and mediate synaptic plasticity or the development of seizure activity. This article focuses on the function of kainate receptors in the amygdala, a brain region that plays a central role in emotional behavior and certain psychiatric illnesses. Evidence is reviewed indicating that postsynaptic kainate receptors containing the glutamate receptor 5 kainate receptor (GLUk5) subunit are present on interneurons and pyramidal cells in the basolateral amygdala and mediate a component of the synaptic responses of these neurons to glutamatergic input. In addition, GLUk5-containing kainate receptors are present on presynaptic terminals of GABAergic neurons, where they modulate the release of GABA in an agonist concentration-dependent, bidirectional manner. GLUk5-containing kainate receptors also mediate a longlasting synaptic facilitation induced by low-frequency stimulation in the external capsule to the basolateral nucleus pathway, and they appear to be party responsible for the susceptibility of the amygdala to epileptogenesis. Taken together, these findings have suggested a prominent role of GLUk5-containing kainate receptors in the regulation of neuronal excitability in the amygdala.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huettner J. E. (2003). Kainate receptors and synaptic transmission. Prog. Neurobiol. 70, 387–407.

    Article  PubMed  CAS  Google Scholar 

  2. Lerma J. (2003). Roles and rules of kainate receptors in synaptic transmission. Nat. Rev. Neurosci. 4, 481–495.

    Article  PubMed  CAS  Google Scholar 

  3. Bettler B., Boulter J., Hermans-Borgmeyer I., et al. (1990). Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583–595.

    Article  PubMed  CAS  Google Scholar 

  4. Sommer B., Burnashev N., Verdoorn T. A., Keinanen K., Sakmann B., Seeburg P. H. (1992). A glutamate receptor channel with high affinity for domoate and kainate. EMBO J. 11, 1651–1656.

    PubMed  CAS  Google Scholar 

  5. Egebjerg J., Heinemann S. F. (1993). Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc. Natl. Acad. Sci. USA 90, 755–759.

    Article  PubMed  CAS  Google Scholar 

  6. Schiffer H. H., Swanson G. T., Heinemann S. F. (1997). Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  7. Cui C., Mayer M. L. (1999). Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7. J. Neurosci. 19, 8281–8291.

    PubMed  CAS  Google Scholar 

  8. Paternain A. V., Herrera M. T., Nieto M. A., Lerma J. (2000). GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J. Neurosci. 20, 196–205.

    PubMed  CAS  Google Scholar 

  9. Herb A., Burnashev N., Werner P., Sakmann B., Wisden W., Seeburg P. H. (1992). The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775–785.

    Article  PubMed  CAS  Google Scholar 

  10. Sakimura K., Morita T., Kushiya E., Mishina M. (1992). Primary structure and expression of the gamma 2 subunit of the glutamate receptor channel selective for kainate. Neuron 8, 267–274.

    Article  PubMed  CAS  Google Scholar 

  11. Hollmann M., Heinemann S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  12. Gregor P., O’Hara B. F., Yang X., Uhl G. R. (1993). Expression and novel subunit isoforms of glutamate receptor genes GluR5 and GluR6. Neuroreport 4, 1343–1346.

    Article  PubMed  CAS  Google Scholar 

  13. Herb A., Higuchi M., Sprengel R., Seeburg P. H. (1996). Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc. Natl. Acad. Sci. USA 93, 1875–1880.

    Article  PubMed  CAS  Google Scholar 

  14. Sommer B., Kohler M., Sprengel R., Seeburg P. H. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19.

    Article  PubMed  CAS  Google Scholar 

  15. Burnashev N., Zhou Z., Neher E., Sakmann B. (1995). Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485(pt 2), 403–418.

    PubMed  CAS  Google Scholar 

  16. Bowie D., Mayer M. L. (1995). Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462.

    Article  PubMed  CAS  Google Scholar 

  17. Kamboj S. K., Swanson G. T., Cull-Candy S. G. (1995). Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. 486(pt 2), 297–303.

    PubMed  CAS  Google Scholar 

  18. Donevan S. D., Rogawski M. A. (1995). Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc. Natl. Acad. Sci. USA 92, 9298–9302.

    Article  PubMed  CAS  Google Scholar 

  19. Koh D. S., Burnashev N., Jonas P. (1995). Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. 486(pt 2), 305–312.

    PubMed  CAS  Google Scholar 

  20. Bahring R., Bowie D., Benveniste M., Mayer M. L. (1997). Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines. J. Physiol. 502(pt 3), 575–589.

    Article  PubMed  CAS  Google Scholar 

  21. Kohler M., Burnashev N., Sakmann B., Seeburg P. H. (1993). Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500.

    Article  PubMed  CAS  Google Scholar 

  22. Castillo P. E., Malenka R. C., Nicoll R. A. (1997). Kainate receptors mediate a slow post-synaptic current in hippocampal CA3 neurons. Nature 388, 182–186.

    Article  PubMed  CAS  Google Scholar 

  23. Vignes M., Bleakman D., Lodge D., Collingridge G. L. (1997). The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus. Neuropharmacology 36, 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  24. Cossart R., Esclapez M., Hirsch J. C., Bernard C., Ben Ari Y. (1998). GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat. Neurosci. 1, 470–478.

    Article  PubMed  CAS  Google Scholar 

  25. Li H., Rogawski M. A. (1998). GluR5 kainate receptor mediated synaptic transmission in rat basolateral amygdala in vitro. Neuropharmacology 37, 1279–1286.

    Article  PubMed  CAS  Google Scholar 

  26. Kidd F. L., Isaac J. T. (1999). Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400, 569–573.

    Article  PubMed  CAS  Google Scholar 

  27. Frerking M., Nicoll R. A. (2000). Synaptic kainate receptors. Curr. Opin. Neurobiol. 10, 342–351.

    Article  PubMed  CAS  Google Scholar 

  28. Kullmann D. M. (2001). Presynaptic kainate receptors in the hippocampus: slowly emerging from obscurity. Neuron 32, 561–564.

    Article  PubMed  CAS  Google Scholar 

  29. Kullmann D. M. (2001). Presynaptic kainate receptors in the hippocampus. Slowly emerging from obscurity. Neuron 32, 561–564.

    Article  PubMed  CAS  Google Scholar 

  30. Wisden W., Seeburg P. H. (1993). A complex mosaic of high-affinity kainate receptors in rat brain. J. Neurosci. 13, 3582–3598.

    PubMed  CAS  Google Scholar 

  31. LeDoux J. E. (1992). Brain mechanisms of emotion and emotional learning. Curr. Opin. Neurobiol. 2, 191–197.

    Article  PubMed  CAS  Google Scholar 

  32. Davis M. (1994). The role of the amygdala in emotional learning. Int. Rev. Neurobiol. 36, 225–266.

    Article  PubMed  CAS  Google Scholar 

  33. Schneider F., Grodd W., Weiss U., et al. (1997). Functional MRI reveals left amygdala activation during emotion. Psychiatry Res. 76, 75–82.

    Article  PubMed  CAS  Google Scholar 

  34. Davidson R. J., Abercrombie H., Nitschke J. B., Putnam K. (1999). Regional brain function, emotion and disorders of emotion. Curr. Opin. Neurobiol. 9, 228–234.

    Article  PubMed  CAS  Google Scholar 

  35. Goldstein L. E., Rasmusson A. M., Bunney B. S., Roth R. H. (1996). Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J. Neurosci. 16, 4787–4798.

    PubMed  CAS  Google Scholar 

  36. Habib K. E., Gold P. W., Chrousos G. P. (2001). Neuroendocrinology of stress. Endocrinol. Metab. Clin. N. Am. 30, 695–728.

    Article  CAS  Google Scholar 

  37. Davis M. (1992). The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375.

    Article  PubMed  CAS  Google Scholar 

  38. Abercrombie H. C., Schaefer S. M., Larson C. L., et al. (1998). Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport 9, 3301–3307.

    Article  PubMed  CAS  Google Scholar 

  39. Drevets W. C. (1999). Prefrontal cortical-amygdalar metabolism in major depression. Ann. NY Acad. Sci. 877, 614–637.

    Article  PubMed  CAS  Google Scholar 

  40. Davidson R. J., Slagter H. A. (2000). Probing emotion in the developing brain, functional neuroimaging in the assessment of the neural substrates of emotion in normal and disordered children and adolescents. Ment. Retard. Dev. Disabil. Res. Rev. 6, 166–170.

    Article  PubMed  CAS  Google Scholar 

  41. Rauch S. L., Whalen P. J., Shin L. M., et al. (2000). Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder, a functional MRI study. Biol. Psychiatry 47, 769–776.

    Article  PubMed  CAS  Google Scholar 

  42. Rauch S. L., Shin L. M., Wright C. I. (2003). Neuroimaging studies of amygdala function in anxiety disorders. Ann. NY Acad. Sci. 985, 389–410.

    PubMed  Google Scholar 

  43. Rogawski M. A., Gryder D., Castaneda D., Yonekawa W., Banks M. K., Li H. (2003). GluR5 kainate receptors, seizures, and the amygdala. Ann. NY Acad. Sci. 985, 150–162.

    PubMed  CAS  Google Scholar 

  44. McDonald A. J. (2003). Is there an amygdala and how far does it extend? An anatomical perspective. Ann. NY Acad. Sci. 985, 1–21.

    PubMed  Google Scholar 

  45. Sah P., Faber E. S., Lopez D. A., Power J. (2003). The amygdaloid complex, anatomy and physiology. Physiol. Rev. 83, 803–834.

    PubMed  CAS  Google Scholar 

  46. Rainnie D. G., Asprodini E. K., Shinnick-Gallagher P. (1992). Kindling-induced long-lasting changes in synaptic transmission in the basolateral amygdala. J. Neurophysiol. 67, 443–454.

    PubMed  CAS  Google Scholar 

  47. Gean P. W., Chang F. C. (1992). Pharmacological characterization of excitatory synaptic potentials in rat basolateral amygdaloid neurons. Synapse 11, 1–9.

    Article  PubMed  CAS  Google Scholar 

  48. Farb C. R., Aoki C., LeDoux J. E. (1995). Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala, a light and electron microscopic study. J. Comp. Neurol. 362, 86–108.

    Article  PubMed  CAS  Google Scholar 

  49. Li X. F., Phillips R., LeDoux J. E. (1995). NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp. Brain Res. 105, 87–100.

    Article  PubMed  CAS  Google Scholar 

  50. Neugebauer V., Keele N. B., Shinnick-Gallagher P. (1997). Epileptogenesis in vivo enhances the sensitivity of inhibitory presynaptic metabotropic glutamate receptors in basolateral amygdala neurons in vitro. J. Neurosci. 17, 983–995.

    PubMed  CAS  Google Scholar 

  51. Li H., Weiss S. R., Chuang D. M., Post R. M., Rogawski M. A. (1998). Bidirectional synaptic plasticity in the rat basolateral amygdala: characterization of an activity-dependent switch sensitive to the presynaptic metabotropic glutamate receptor antagonist 2S-alpha-ethylglutamic acid. J. Neurosci. 18, 1662–1670.

    PubMed  CAS  Google Scholar 

  52. Li H., Chen A., Xing G., Wei M. L., Rogawski M. A. (2001). Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Nat. Neurosci. 4, 612–620.

    Article  PubMed  CAS  Google Scholar 

  53. Braga M. F., Aroniadou-Anderjaska V., Xie J., Li H. (2003). Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J. Neurosci. 23, 442–452.

    PubMed  CAS  Google Scholar 

  54. Vignes M., Collingridge G. L. (1997). The synaptic activation of kainate receptors. Nature 388, 179–182.

    Article  PubMed  CAS  Google Scholar 

  55. Wilding T. J., Huettner J. E. (1995). Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol. Pharmacol. 47, 582–587.

    PubMed  CAS  Google Scholar 

  56. Paternain A. V., Morales M., Lerma J. (1995). Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189.

    Article  PubMed  CAS  Google Scholar 

  57. Bleakman R., Schoepp D. D., Ballyk B., et al. (1996). Pharmacological discrimination of GluR5 and GluR6 kainate receptor subtypes by (3S,4a R, 6R, 8a R)-6-[2-(1 (2) H-tetrazole-5-yl)ethyl]decahyd roisdoquinoline-3 carboxylicacid. Mol. Pharmacol. 49, 581–585.

    PubMed  CAS  Google Scholar 

  58. Bureau I., Dieudonne S., Coussen F., Mulle C. (2000). Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc. Natl. Acad. Sci. USA 97, 6838–6843.

    Article  PubMed  CAS  Google Scholar 

  59. Li P., Wilding T. J., Kim S. J., Calejesan A. A., Huettner J. E., Zhuo M. (1999). Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161–164.

    Article  PubMed  CAS  Google Scholar 

  60. Gryder D. S., Rogawski M. A. (2003). Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J. Neurosci. 23, 7069–7074.

    PubMed  CAS  Google Scholar 

  61. Liu Q. S., Patrylo P. R., Gao X. B., van den Pol A. N. (1999). Kainate acts at presynaptic receptors to increase GABA release from hypothalamic neurons. J. Neurophysiol. 82, 1059–1062.

    PubMed  CAS  Google Scholar 

  62. Cossart R., Tyzio R., Dinocourt C., et al. (2001). Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron 29, 497–508.

    Article  PubMed  CAS  Google Scholar 

  63. Contractor A., Swanson G., Heinemann S. F. (2001). Kainate receptors are involved in short-and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29, 209–216.

    Article  PubMed  CAS  Google Scholar 

  64. Schmitz D., Mellor J., Frerking M., Nicoll R. A. (2001). Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. USA 98, 11,003–11,008.

    Article  CAS  Google Scholar 

  65. Chittajallu R., Braithwaite S. P., Clarke V. R., Henley J. M. (1999). Kainate receptors, subunits, synaptic localization and function. Trends Pharmacol. Sci. 20, 26–35.

    Article  PubMed  CAS  Google Scholar 

  66. Mulle C., Sailer A., Swanson G. T., et al. (2000). Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28, 475–484.

    Article  PubMed  CAS  Google Scholar 

  67. Semyanov A., Kullmann D. M. (2001). Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons. Nat. Neurosci. 4, 718–723.

    Article  PubMed  CAS  Google Scholar 

  68. Cunha R. A., Malva J. O., Ribeiro J. A. (2000). Pertussis toxin prevents presynaptic inhibition by kainate receptors of rat hippocampal [(3)H]GABA release. FEBS Lett. 469, 159–162.

    Article  PubMed  CAS  Google Scholar 

  69. Rodriguez-Moreno A., Lerma J. (1998). Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20, 1211–1218.

    Article  PubMed  CAS  Google Scholar 

  70. Fanselow M. S., Gale G. D. (2003). The amygdala, fear, and memory. Ann. NY Acad. Sci. 985, 125–134.

    PubMed  Google Scholar 

  71. Teyler T. J., DiScenna P. (1987). Long-term potentiation. Annu. Rev. Neurosci. 10, 131–161.

    Article  PubMed  CAS  Google Scholar 

  72. Gustafsson B., Wigstrom H. (1988). Physiological mechanisms underlying long-term potentiation. Trends Neurosci. 11, 156–162.

    Article  PubMed  CAS  Google Scholar 

  73. Nicoll R. A., Kauer J. A., Malenka R. C. (1988). The current excitement in long-term potentiation. Neuron 1, 97–103.

    Article  PubMed  CAS  Google Scholar 

  74. Madison D. V., Malenka R. C., Nicoll R. A. (1991). Mechanisms underlying long-term potentiation of synaptic transmission. Annu. Rev. Neurosci. 14, 379–397.

    Article  PubMed  CAS  Google Scholar 

  75. Bliss T. V., Collingridge G. L. (1993). A synaptic model of memory, long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  76. Nicoll R. A., Malenka R. C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118.

    Article  PubMed  CAS  Google Scholar 

  77. Lynch G., Larson J., Kelso S., Barrionuevo G., Schottler F. (1983). Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721.

    Article  PubMed  CAS  Google Scholar 

  78. Mulkey R. M., Malenka R. C. (1992). Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975.

    Article  PubMed  CAS  Google Scholar 

  79. Teyler T. J., Cavus I., Coussens C., et al. (1994). Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus 4, 623–634.

    Article  PubMed  CAS  Google Scholar 

  80. Chittajallu R., Alford S., Collingridge G. L. (1998). Ca2+ and synaptic plasticity. Cell Calcium 24, 377–385.

    Article  PubMed  CAS  Google Scholar 

  81. Kemp N., Bashir Z. I. (2001). Long-term depression, a cascade of induction and expression mechanisms. Prog. Neurobiol. 65, 339–365.

    Article  PubMed  CAS  Google Scholar 

  82. Collingridge G. L., Kehl S. J., McLennan H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol 334, 33–46.

    PubMed  CAS  Google Scholar 

  83. Muller D., Joly M., Lynch G. (1988). Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1697.

    Article  PubMed  CAS  Google Scholar 

  84. Malenka R. C., Nicoll R. A. (1993). NMDA-receptor-dependent synaptic plasticity, multiple forms and mechanisms. Trends Neurosci. 16, 521–527.

    Article  PubMed  CAS  Google Scholar 

  85. Kullmann D. M., Siegelbaum S. A. (1995). The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15, 997–1002.

    Article  PubMed  CAS  Google Scholar 

  86. Malenka R. C., Nicoll R. A. (1999). Long-term potentiation—a decade of progress? Science 285, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  87. Kemp N., McQueen J., Faulkes S., Bashir Z. I. (2000). Different forms of LTD in the CA1 region of the hippocampus, role of age and stimulus protocol. Eur. J. Neurosci. 12, 360–366.

    Article  PubMed  CAS  Google Scholar 

  88. Grover L. M., Teyler T. J. (1990). Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347, 477–479.

    Article  PubMed  CAS  Google Scholar 

  89. Morgan S. L., Teyler T. J. (1999). VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J. Neurophysiol. 82, 736–740.

    PubMed  CAS  Google Scholar 

  90. Aroniadou V. A., Teyler T. J. (1992). Induction of NMDA receptor-independent long-term potentiation (LTP) in visual cortex of adult rats. Brain Res. 584, 169–173.

    Article  PubMed  CAS  Google Scholar 

  91. Aroniadou V. A., Maillis A., Stefanis C. C. (1993). Dihydropyridine-sensitive calcium channels are involved in the induction of N-methyl-d-aspartate receptor-independent long-term potentiation in visual cortex of adult rats. Neurosci. Lett. 151, 77–80.

    Article  PubMed  CAS  Google Scholar 

  92. Bortolotto Z. A., Clarke V. R., Delany C. M., et al. (1999). Kainate receptors are involved in synaptic plasticity. Nature 402, 297–301.

    Article  PubMed  CAS  Google Scholar 

  93. Aroniadou-Anderjaska V., Post R. M., Rogawski M. A., Li H. (2001). Input-specific LTP and depotentiation in the basolateral amygdala. Neuroreport 12, 635–640.

    Article  PubMed  CAS  Google Scholar 

  94. Rammes G., Steckler T., Kresse A., Schutz G., Zieglgansberger W., Lutz B. (2000). Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. Eur. J. Neurosci. 12, 2534–2546.

    Article  PubMed  CAS  Google Scholar 

  95. Rogan M. T., Staubli U. V., LeDoux J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607.

    Article  PubMed  CAS  Google Scholar 

  96. Maren S. (1999). Long-term potentiation in the amygdala, a mechanism for emotional learning and memory. Trends Neurosci. 22, 561–567.

    Article  PubMed  CAS  Google Scholar 

  97. Huang Y. Y., Kandel E. R. (1998). Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21, 169–178.

    Article  PubMed  CAS  Google Scholar 

  98. Weisskopf M. G., Bauer E. P., LeDoux J. E. (1999). l-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19, 10,512–10,519.

    CAS  Google Scholar 

  99. Mahanty N. K., Sah P. (1998). Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394, 683–687.

    Article  PubMed  CAS  Google Scholar 

  100. Wang S. J., Gean P. W. (1999). Long-term depression of excitatory synaptic transmission in the rat amygdala. J. Neurosci. 19, 10,656–10,663.

    CAS  Google Scholar 

  101. Jones K. A., Wilding T. J., Huettner J. E., Costa A. M. (1997). Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Neuropharmacology 36, 853–863.

    Article  PubMed  CAS  Google Scholar 

  102. Chapman P. F. (2001). The diversity of synaptic plasticity. Nat. Neurosci. 4, 556–558.

    Article  PubMed  CAS  Google Scholar 

  103. Aggleton J. P. (2000). The Amygdala, A Functional Analysis, 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  104. Braga M. F. M., Li H., Rogawski M. A. (2003). Topiramate enhances GABAergic transmission and blocks GluR5 kainate receptors in basolateral amygdala interneurons. Soc. Neurosci. Abs. 33, 582.15.

    Google Scholar 

  105. Vieta E., Sanchez-Moreno J., Goikolea J. M., et al. (2003). Adjunctive topiramate in bipolar II disorder. World J. Biol. Psychiatry 4(4), 172–176.

    Article  PubMed  Google Scholar 

  106. Sachs G. S. (2003). Decision tree for the treatment of bipolar disorder. J. Clin. Psychiatry 64(Suppl 8), 35–40.

    PubMed  CAS  Google Scholar 

  107. Deutsch S. I., Schwartz B. L., Rosse R. B., Mastropaolo J., Marvel C. L., Drapalski A. L. (2003). Adjuvant topiramate administration, a pharmacologic strategy for addressing NMDA receptor hypofunction in schizophrenia. Clin. Neuropharmacol. 26(4), 199–206.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga, M.F.M., Aroniadou-Anderjaska, V. & Li, H. The physiological role of kainate receptors in the amygdala. Mol Neurobiol 30, 127–141 (2004). https://doi.org/10.1385/MN:30:2:127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:30:2:127

Index Entries