Antipova, A.: Urban environment: the differences between the city in Europe and the United States. In: Urban Environment, Travel Behavior, Health, and Resident Satisfaction, pp. 35–117. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74198-7_2
Chapter
Google Scholar
Biljecki, F., Chew, L.Z.X., Milojevic-Dupont, N., Creutzig, F.: Open government geospatial data on buildings for planning sustainable and resilient cities (2021). https://doi.org/10.48550/arXiv.2107.04023
Biyik, C., et al.: Smart parking systems: reviewing the literature, architecture and ways forward. Smart Cities 4(2), 623–642 (2021). https://doi.org/10.3390/smartcities4020032
Article
Google Scholar
Chovani, T., Jokonya, O.: Exploring factors influencing the adoption of smart parking. In: AMCIS 2019 Proceedings, pp. 1–5 (2019)
Google Scholar
Derbel, A., Boujelbene, Y.: Road congestion analysis in the agglomeration of sfax using a bayesian model. In: Boudriga, N., Alouini, M.-S., Rekhis, S., Sabir, E., Pollin, S. (eds.) UNet 2018. LNCS, vol. 11277, pp. 131–142. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02849-7_12
Chapter
Google Scholar
Die Bundeswahlleiterin: Strukturdaten Bamberg, Stadt (2024). https://www.bundeswahlleiterin.de/europawahlen/2024/strukturdaten/bund-99/land-9/kreis-9461.html
Die Bundeswahlleiterin: Strukturdaten Düsseldorf, Stadt (2024). https://www.bundeswahlleiterin.de/europawahlen/2024/strukturdaten/bund-99/land-5/kreis-5111.html
Die Bundeswahlleiterin: Strukturdaten Heilbronn, Stadtkreis (2024). https://www.bundeswahlleiterin.de/europawahlen/2024/strukturdaten/bund-99/land-8/kreis-8121.html
Fahim, A., Hasan, M., Chowdhury, M.A.: Smart parking systems: comprehensive review based on various aspects. Heliyon 7(5), e07050 (2021). https://doi.org/10.1016/j.heliyon.2021.e07050
Article
Google Scholar
Fan, J., Hu, Q., Xu, Y., Tang, Z.: Predicting vacant parking space availability: a long short-term memory approach. IEEE Intell. Transp. Syst. Mag. 14(2), 129–143 (2022). https://doi.org/10.1109/MITS.2020.3014131
Article
Google Scholar
Gao, Y., Janssen, M., Zhang, C.: Understanding the evolution of open government data research: towards open data sustainability and smartness. Int. Rev. Adm. Sci. 89(1), 59–75 (2023). https://doi.org/10.1177/00208523211009955
Article
Google Scholar
Gassmann, P.: Teamapps-org/maplibre-gl-styles: Style collection for selfhosting maps using tileserver-gl and mapbox-libre (2024). https://github.com/teamapps-org/maplibre-gl-styles
Hagen, T., Saki, S.: start2park - Parksuche erfassen, verstehen und prognostizieren (2023). https://fhffm.bsz-bw.de/frontdoor/deliver/index/docId/6911/file/Abschlussbericht_Projekt_start2park_2023.pdf
Hagen, T., Schäfer, P., Scheel-Kopeinig, S., Saki, S., Nguyen, T., Wenz, K.P., Bellina, L.: Ganglinien als Grundlage für eine nachhaltige Parkraumplanung (2020). https://www.frankfurt-university.de/fileadmin/standard/Hochschule/Fachbereich_1/FFin/Neue_Mobilitaet/Veroeffentlichungen/2020/Abschlussbericht_Ganglinien_final.pdf
Hasan, M.H., van Hentenryck, P., Legrain, A.: The commute trip-sharing problem. Transp. Sci. 54(6), 1640–1675 (2020). https://doi.org/10.1287/trsc.2019.0969
Article
Google Scholar
Jelen, G., Podobnik, V., Babic, J.: Contextual prediction of parking spot availability: a step towards sustainable parking. J. Clean. Prod. 312, 127684 (2021). https://doi.org/10.1016/j.jclepro.2021.127684
Article
Google Scholar
Kalašová, A., Čulík, K., Poliak, M., Otahálová, Z.: Smart parking applications and its efficiency. Sustainability 13(11), 6031 (2021). https://doi.org/10.3390/su13116031
Article
Google Scholar
Landeshauptstadt Düsseldorf: Düsseldorfer Zeitleiste, Zeitraum: bis circa 1300 (2025). https://www.duesseldorf.de/stadtarchiv/stadtgeschichte/zeitleiste/zeitleiste-01-0000-bis-1300
Li, J., Ye, J., He, Q., Shao, C.: A novel scheme to relieve parking pressure at tourist attractions on holidays. Sustainability 8(2), 164 (2016). https://doi.org/10.3390/su8020164
Article
Google Scholar
Li, W., Wolinski, D., Lin, M.C.: City-scale traffic animation using statistical learning and metamodel-based optimization. ACM Trans. Graph. 36(6), 1–12 (2017). https://doi.org/10.1145/3130800.3130847
Article
Google Scholar
Ministerium für Landesentwicklung und Wohnen über Garagen und Stellplätze: Garagenverordnung: GaVO (2011). https://dejure.org/gesetze/GaVO/4.html
OpenStreetMap Wiki contributors: Map features (2024). https://wiki.openstreetmap.org/w/index.php?title=Map_features&oldid=2736456
Petrovska, N., Stevanovic, A.: Traffic congestion analysis visualisation tool. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 1489–1494. IEEE (2015). https://doi.org/10.1109/ITSC.2015.243
Quarati, A.: Open government data: usage trends and metadata quality. J. Inf. Sci. 49(4), 887–910 (2023). https://doi.org/10.1177/01655515211027775
Article
Google Scholar
Rikus, S., Hoffmann, S., Ungureanu, T., Rommerskirchen, S., Plesker, M.: Auskunft über verfügbare Parkplätze in Städten. Forschungsvereinigung Automobiltechnik e.V. (FAT) (271) (2015)
Google Scholar
Saki, S., Hamann, J., Hagen, T.: Tesspy: a python package for geographical tessellation. J. Open Source Softw. 7(76), 4620 (2022). https://doi.org/10.21105/joss.04620
Salazar-Carrillo, J., Torres-Ruiz, M., Davis, C.A., Quintero, R., Moreno-Ibarra, M., Guzmán, G.: Traffic congestion analysis based on a web-gis and data mining of traffic events from twitter. Sensors (Basel, Switzerland) 21(9) (2021). https://doi.org/10.3390/s21092964
Schäfer, P., Lux, K., Wolf, M., Hagen, T., Celebi, K.: Entwicklung von übertragbaren Erhebungsmethoden unter Berücksichtigung innovativer Technologien zur Parkraumdatengenerierung und Digitalisierung des Parkraums - ParkenDigital. https://www.frankfurt-university.de/fileadmin/standard/Hochschule/Fachbereich_1/FFin/Neue_Mobilitaet/Veroeffentlichungen/2019/ParkenDigital_Bericht_FRA-UAS.pdf
Shan, Z., Pan, Z., Li, F., Xu, H.: Visual analytics of traffic congestion propagation path with large scale camera data. Chin. J. Electron. 27(5), 934–941 (2018). https://doi.org/10.1049/cje.2018.04.011
Article
Google Scholar
Sieber, N., Krail, M., Hölzemann, C.: Klimawirkungen von Maßnahmen im Verkehr (2024). https://doi.org/10.24406/publica-2937
Stadt Aachen: Mobilitätsdashboard der Stadt Aachen (2022). https://verkehr.aachen.de/
Stadt Heilbronn: Heilbronn entdecken (2025). https://www.heilbronn.de/leben/heilbronn-entdecken.html
Stadt Troisdorf: Dashboard zur Mobilität in der Stadt Troisdorf (2025). https://www.troisdorf.de/de/rathaus-service/mobilitaet/dashboard/
Stadtverwaltung Bamberg: Kulturstadt Bamberg - Weltkulturerbe leben: Geschichte und Gegenwart (2025). https://www.stadt.bamberg.de/Unsere-Stadt/Stadtinfo/Stadtportr%C3%A4t/
Unwin, A.: Why is data visualization important? What is important in data visualization? Harvard Data Sci. Rev. 2(1) (2020). https://doi.org/10.1162/99608f92.8ae4d525
Wemegah, T.D., Zhu, S.: Big data challenges in transportation: a case study of traffic volume count from massive radio frequency identification(rfid) data. In: 2017 International Conference on the Frontiers and Advances in Data Science (FADS), pp. 58–63. IEEE (2017). https://doi.org/10.1109/FADS.2017.8253194
Winter, S., Goel, S.: Smart Parking in Fast-Growing Cities. Challenges and Solutions. TU Wien Academic Press (2021). https://doi.org/10.34727/2021/isbn.978-3-85448-045-7
Yang, J., He, J., Wang, X.: Design of intelligent parking system based on internet of things and cloud platform. Int. J. Grid High Perf. Comput. 15(2), 1–18 (2023). https://doi.org/10.4018/IJGHPC.316836
Article
Google Scholar
Yang, S., Ma, W., Pi, X., Qian, S.: A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transport. Res. Part C: Emerg. Technol. 107, 248–265 (2019). https://doi.org/10.1016/j.trc.2019.08.010
Article
Google Scholar