Skip to main content

Park-An: A Cloud-Based Service for Parking Pressure Analysis Based on Open and Municipal Data

  • Conference paper
  • First Online:
HCI in Mobility, Transport, and Automotive Systems (HCII 2025)

Abstract

Cities and municipalities face significant challenges in implementing an efficient municipal parking management system due to a lack of human and IT infrastructural resources to conduct data evaluations and build effective systems, as well as the lack of standards and APIs for efficient data sharing. Scattered and unstructured data in various formats and qualities hinder its integration with other open data sources. To address these challenges, we developed Park-an, a cloud-based service. It enables public administrators to upload, analyze, and visualize parking data in combination with other public datasets, such as OpenStreetMap (OSM). The prototype facilitates the identification of parking pressure through indicators and offers interactive visualization tools to enable better planning and decision-making. This paper outlines the software architecture of Park-an, which is based on microservices and is cloud-native, ensuring robustness and scalability. The primary feature of Park-an is the calculation of parking pressure using various indicators, such as the ratio of building area to parking area and geometric distances of points of interest (POIs) to parking spaces. The paper presents a demonstration of Park-an’s functionalities for urban parking planning and optimization based on three German cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 69.54
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 87.73
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a detailed view of the following results, it is recommended that the reader view this document digitally and zoom in on the respective figures.

  2. 2.

    The size of parking spaces is regulated in the Empfehlungen für Anlagen des ruhenden Verkehrs (EAR) and in the Garagenverordnung (GaVO) of the federal states. For example, the GaVO of Baden-Württemberg specifies a minimum parking space size for cars of \({2.3}\,\textrm{m} \times {5}\,\textrm{m}\) [21].

  3. 3.

    For example, due to their early pre-medieval history and relatively limited land area, European cities have city walls with dense housing and winding streets in the center, as well as mostly multi-family houses outside the city center. American cities, on the other hand, often have single-family homes outside the center and usually no city walls, as well as significantly fewer monarchist and religious buildings and a greater distribution of workspaces throughout the metropolitan area [1].

References

  1. Antipova, A.: Urban environment: the differences between the city in Europe and the United States. In: Urban Environment, Travel Behavior, Health, and Resident Satisfaction, pp. 35–117. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74198-7_2

    Chapter  Google Scholar 

  2. Biljecki, F., Chew, L.Z.X., Milojevic-Dupont, N., Creutzig, F.: Open government geospatial data on buildings for planning sustainable and resilient cities (2021). https://doi.org/10.48550/arXiv.2107.04023

  3. Biyik, C., et al.: Smart parking systems: reviewing the literature, architecture and ways forward. Smart Cities 4(2), 623–642 (2021). https://doi.org/10.3390/smartcities4020032

    Article  Google Scholar 

  4. Chovani, T., Jokonya, O.: Exploring factors influencing the adoption of smart parking. In: AMCIS 2019 Proceedings, pp. 1–5 (2019)

    Google Scholar 

  5. Derbel, A., Boujelbene, Y.: Road congestion analysis in the agglomeration of sfax using a bayesian model. In: Boudriga, N., Alouini, M.-S., Rekhis, S., Sabir, E., Pollin, S. (eds.) UNet 2018. LNCS, vol. 11277, pp. 131–142. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02849-7_12

    Chapter  Google Scholar 

  6. Die Bundeswahlleiterin: Strukturdaten Bamberg, Stadt (2024). https://www.bundeswahlleiterin.de/europawahlen/2024/strukturdaten/bund-99/land-9/kreis-9461.html

  7. Die Bundeswahlleiterin: Strukturdaten Düsseldorf, Stadt (2024). https://www.bundeswahlleiterin.de/europawahlen/2024/strukturdaten/bund-99/land-5/kreis-5111.html

  8. Die Bundeswahlleiterin: Strukturdaten Heilbronn, Stadtkreis (2024). https://www.bundeswahlleiterin.de/europawahlen/2024/strukturdaten/bund-99/land-8/kreis-8121.html

  9. Fahim, A., Hasan, M., Chowdhury, M.A.: Smart parking systems: comprehensive review based on various aspects. Heliyon 7(5), e07050 (2021). https://doi.org/10.1016/j.heliyon.2021.e07050

    Article  Google Scholar 

  10. Fan, J., Hu, Q., Xu, Y., Tang, Z.: Predicting vacant parking space availability: a long short-term memory approach. IEEE Intell. Transp. Syst. Mag. 14(2), 129–143 (2022). https://doi.org/10.1109/MITS.2020.3014131

    Article  Google Scholar 

  11. Gao, Y., Janssen, M., Zhang, C.: Understanding the evolution of open government data research: towards open data sustainability and smartness. Int. Rev. Adm. Sci. 89(1), 59–75 (2023). https://doi.org/10.1177/00208523211009955

    Article  Google Scholar 

  12. Gassmann, P.: Teamapps-org/maplibre-gl-styles: Style collection for selfhosting maps using tileserver-gl and mapbox-libre (2024). https://github.com/teamapps-org/maplibre-gl-styles

  13. Hagen, T., Saki, S.: start2park - Parksuche erfassen, verstehen und prognostizieren (2023). https://fhffm.bsz-bw.de/frontdoor/deliver/index/docId/6911/file/Abschlussbericht_Projekt_start2park_2023.pdf

  14. Hagen, T., Schäfer, P., Scheel-Kopeinig, S., Saki, S., Nguyen, T., Wenz, K.P., Bellina, L.: Ganglinien als Grundlage für eine nachhaltige Parkraumplanung (2020). https://www.frankfurt-university.de/fileadmin/standard/Hochschule/Fachbereich_1/FFin/Neue_Mobilitaet/Veroeffentlichungen/2020/Abschlussbericht_Ganglinien_final.pdf

  15. Hasan, M.H., van Hentenryck, P., Legrain, A.: The commute trip-sharing problem. Transp. Sci. 54(6), 1640–1675 (2020). https://doi.org/10.1287/trsc.2019.0969

    Article  Google Scholar 

  16. Jelen, G., Podobnik, V., Babic, J.: Contextual prediction of parking spot availability: a step towards sustainable parking. J. Clean. Prod. 312, 127684 (2021). https://doi.org/10.1016/j.jclepro.2021.127684

    Article  Google Scholar 

  17. Kalašová, A., Čulík, K., Poliak, M., Otahálová, Z.: Smart parking applications and its efficiency. Sustainability 13(11), 6031 (2021). https://doi.org/10.3390/su13116031

    Article  Google Scholar 

  18. Landeshauptstadt Düsseldorf: Düsseldorfer Zeitleiste, Zeitraum: bis circa 1300 (2025). https://www.duesseldorf.de/stadtarchiv/stadtgeschichte/zeitleiste/zeitleiste-01-0000-bis-1300

  19. Li, J., Ye, J., He, Q., Shao, C.: A novel scheme to relieve parking pressure at tourist attractions on holidays. Sustainability 8(2), 164 (2016). https://doi.org/10.3390/su8020164

    Article  Google Scholar 

  20. Li, W., Wolinski, D., Lin, M.C.: City-scale traffic animation using statistical learning and metamodel-based optimization. ACM Trans. Graph. 36(6), 1–12 (2017). https://doi.org/10.1145/3130800.3130847

    Article  Google Scholar 

  21. Ministerium für Landesentwicklung und Wohnen über Garagen und Stellplätze: Garagenverordnung: GaVO (2011). https://dejure.org/gesetze/GaVO/4.html

  22. OpenStreetMap Wiki contributors: Map features (2024). https://wiki.openstreetmap.org/w/index.php?title=Map_features&oldid=2736456

  23. Petrovska, N., Stevanovic, A.: Traffic congestion analysis visualisation tool. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 1489–1494. IEEE (2015). https://doi.org/10.1109/ITSC.2015.243

  24. Quarati, A.: Open government data: usage trends and metadata quality. J. Inf. Sci. 49(4), 887–910 (2023). https://doi.org/10.1177/01655515211027775

    Article  Google Scholar 

  25. Rikus, S., Hoffmann, S., Ungureanu, T., Rommerskirchen, S., Plesker, M.: Auskunft über verfügbare Parkplätze in Städten. Forschungsvereinigung Automobiltechnik e.V. (FAT) (271) (2015)

    Google Scholar 

  26. Saki, S., Hamann, J., Hagen, T.: Tesspy: a python package for geographical tessellation. J. Open Source Softw. 7(76), 4620 (2022). https://doi.org/10.21105/joss.04620

  27. Salazar-Carrillo, J., Torres-Ruiz, M., Davis, C.A., Quintero, R., Moreno-Ibarra, M., Guzmán, G.: Traffic congestion analysis based on a web-gis and data mining of traffic events from twitter. Sensors (Basel, Switzerland) 21(9) (2021). https://doi.org/10.3390/s21092964

  28. Schäfer, P., Lux, K., Wolf, M., Hagen, T., Celebi, K.: Entwicklung von übertragbaren Erhebungsmethoden unter Berücksichtigung innovativer Technologien zur Parkraumdatengenerierung und Digitalisierung des Parkraums - ParkenDigital. https://www.frankfurt-university.de/fileadmin/standard/Hochschule/Fachbereich_1/FFin/Neue_Mobilitaet/Veroeffentlichungen/2019/ParkenDigital_Bericht_FRA-UAS.pdf

  29. Shan, Z., Pan, Z., Li, F., Xu, H.: Visual analytics of traffic congestion propagation path with large scale camera data. Chin. J. Electron. 27(5), 934–941 (2018). https://doi.org/10.1049/cje.2018.04.011

    Article  Google Scholar 

  30. Sieber, N., Krail, M., Hölzemann, C.: Klimawirkungen von Maßnahmen im Verkehr (2024). https://doi.org/10.24406/publica-2937

  31. Stadt Aachen: Mobilitätsdashboard der Stadt Aachen (2022). https://verkehr.aachen.de/

  32. Stadt Heilbronn: Heilbronn entdecken (2025). https://www.heilbronn.de/leben/heilbronn-entdecken.html

  33. Stadt Troisdorf: Dashboard zur Mobilität in der Stadt Troisdorf (2025). https://www.troisdorf.de/de/rathaus-service/mobilitaet/dashboard/

  34. Stadtverwaltung Bamberg: Kulturstadt Bamberg - Weltkulturerbe leben: Geschichte und Gegenwart (2025). https://www.stadt.bamberg.de/Unsere-Stadt/Stadtinfo/Stadtportr%C3%A4t/

  35. Unwin, A.: Why is data visualization important? What is important in data visualization? Harvard Data Sci. Rev. 2(1) (2020). https://doi.org/10.1162/99608f92.8ae4d525

  36. Wemegah, T.D., Zhu, S.: Big data challenges in transportation: a case study of traffic volume count from massive radio frequency identification(rfid) data. In: 2017 International Conference on the Frontiers and Advances in Data Science (FADS), pp. 58–63. IEEE (2017). https://doi.org/10.1109/FADS.2017.8253194

  37. Winter, S., Goel, S.: Smart Parking in Fast-Growing Cities. Challenges and Solutions. TU Wien Academic Press (2021). https://doi.org/10.34727/2021/isbn.978-3-85448-045-7

  38. Yang, J., He, J., Wang, X.: Design of intelligent parking system based on internet of things and cloud platform. Int. J. Grid High Perf. Comput. 15(2), 1–18 (2023). https://doi.org/10.4018/IJGHPC.316836

    Article  Google Scholar 

  39. Yang, S., Ma, W., Pi, X., Qian, S.: A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transport. Res. Part C: Emerg. Technol. 107, 248–265 (2019). https://doi.org/10.1016/j.trc.2019.08.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Straßburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Straßburg, S., Göbels, V.P., Fischer-Preßler, D., Neuhüttler, J., Kutz, J. (2025). Park-An: A Cloud-Based Service for Parking Pressure Analysis Based on Open and Municipal Data. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. HCII 2025. Lecture Notes in Computer Science, vol 15817. Springer, Cham. https://doi.org/10.1007/978-3-031-92689-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-92689-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-92688-4

  • Online ISBN: 978-3-031-92689-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics