Skip to main content
Log in

Immunogold Cytochemistry Identifies Specialized Membrane Domains for Monocarboxylate Transport in the Central Nervous System

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

An efficient exchange of lactate between different cell types (such as astrocytes and neurones) would require that lactate transporters are expressed in contiguous parts of the respective plasma membranes. To settle this issue we explored the subcellular expression pattern of monocarboxylate transporters (MCTs) by use of selective antibodies and high resolution immunogold cytochemistry. We investigated whether the membrane domains containing MCT1, MCT2 and MCT4 are spatially related to each other and to other membrane domains, i.e. those containing glutamate receptors. We used retina and cerebellum as a model for our investigations. We found that MCT1 was localized in the apical membrane of pigment epithelial cells and in the photoreceptor inner segment membrane in the retina. In the brain MCT1 was present in endothelial cells. MCT2 was localized in the postsynaptic membrane of parallel fiber-Purkinje cell synapses and MCT4 was situated in the membrane of glial cells in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Poole, R. C. and Halestrap, A. P. 1993. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264:C761–C782.

    Google Scholar 

  2. Halestrap, A. P. and Price, N. T. 1993. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264:761–782.

    Google Scholar 

  3. Schurr, A. and Rigor, B. M. 1998. Brain anaerobic lactate production: a suicide note or a survival kit? Dev. Neurosci. 20:348–357.

    Google Scholar 

  4. Juel, C. 1997. Lactate-proton cotransport in skeletal muscle. Physiol. Rev. 77:321–358.

    Google Scholar 

  5. Juel, C. 1998. Muscle pH regulation: role of training. Acta Physiol. Scand. 162:359–366.

    Google Scholar 

  6. Poole, R. C. and Halestrap, A. P. 1992. Identification and partial purification of the erythrocyte L-lactatetransporter. Biochem. J. 283:855–862.

    Google Scholar 

  7. Poole, R. C. and Halestrap, A. P. 1994. N-terminal protein sequence analysis of the rabbit erythrocyte lactate transporter suggests identity with the cloned monocarboxylate transport protein MCT1. Biochem. J. 303:755–759.

    Google Scholar 

  8. Kim, C. M., Goldstein, J. L., and Brown, M. S. 1992. cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J. Biol. Chem. 15:23113–23121.

    Google Scholar 

  9. Garcia, C. K., Goldstein, J. L., Pathak, R. K., Anderson, R. G., and Brown, M. S. 1994. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 76:865–873.

    Google Scholar 

  10. Jackson, V. N., Price, N. T., and Halestrap, A. P. 1995. cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle. Biochim. Biophys. Acta. 13:193–196.

    Google Scholar 

  11. Takanaga, H., Tamai, I., Inaba, S., Sai, Y., Higashida, H., Yamamoto, H., and Tsuji, A. 1995. cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter. Biochem. Biophys. Res. Commun. 5:370–377.

    Google Scholar 

  12. Koehler-Stec, E. M., Simpson, I. A., Vannucci, S. J., Landschulz, K. T., and Landschulz, W. H. 1998. Monocarboxylate transporter expression in mouse brain. Am. J. Physiol. 275:E516–E524.

    Google Scholar 

  13. Carpenter, L., Poole, R. C., and Halestrap, A. P. 1996. Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettre tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function. Biochim. Biophys. Acta. 1279:157–163.

    Google Scholar 

  14. Shimozono, M., Scofield, M. A., and Wangemann, P. 1997. Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis. Hear Res. 114:213–222.

    Google Scholar 

  15. Garcia, C. K., Brown, M. S., Pathak, R. K., and Goldstein, J. L. 1995. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J. Biol. Chem. 270:1843–1849.

    Google Scholar 

  16. Jackson, V. N., Price, N. T., Carpenter, L., and Halestrap, A. P. 1997. Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem. J. 324:447–453.

    Google Scholar 

  17. Gerhart, D. Z., Enerson, B. E., Zhdankina, O. Y., Leino, R. L., and Drewes, L. R. 1997. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am. J. Physiol. 273:E207–E213.

    Google Scholar 

  18. Lin, R. Y., Vera, J. C., Chaganti, R. S., and Golde, D. 1998. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J. Biol. Chem. 273:28959–28965.

    Google Scholar 

  19. Juel, C. and Halestrap, A. P. 1999. Lactate transport in skeletal muscle-role and regulation of the monocarboxylate transporter. J. Physiol. (Lond.) 517:633–642.

    Google Scholar 

  20. Price, N. T., Jackson, V. N., and Halestrap, A. P. 1998. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirm the existence of a transporter family with an ancient past. Biochem. J. 329:321–328.

    Google Scholar 

  21. Yoon, H., Fanelli, A., Grollman, E. F., and Philp, N. J. 1997. Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 234:90–94.

    Google Scholar 

  22. Philp, N. J., Yoon, H., and Grollman, E. F. 1998. Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am. J. Physiol. 274:1824–1828.

    Google Scholar 

  23. Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G. 1999. Energy on demand. Science 283:496–497.

    Google Scholar 

  24. Nehlig, A. and Pereira de Vasconcelos, A. 1993. Glucose and ketone body utilization by the brain of neonatal rats. Prog. Neurobiol. 40:163–221.

    Google Scholar 

  25. Cremer, J. E., Cunningham, V. J., Pardridge, W. M., Braun, L. D., and Oldendorf, W. H. 1979. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33:439–445.

    Google Scholar 

  26. Schurr, A., Payne, R. S., Miller, J. J., Tseng, M. T., and Rigor, B. M. 2001. Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia. Brain Res. 895:268–272.

    Google Scholar 

  27. Pellerin, L. and Magistretti, P. J. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. U.S.A. 25:10625–10629.

    Google Scholar 

  28. Walz, W. and Mukerji, S. 1988. Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370.

    Google Scholar 

  29. Hassel, B. and Brathe, A. 2000. Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J. Cereb. Blood Flow Metab. 20:327–336.

    Google Scholar 

  30. Demestre, M., Boutelle, M., and Fillenz, M. 1997. Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamate. J. Physiol. 15:825–832.

    Google Scholar 

  31. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E., and Ottersen, O. P. 1999. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2:618–624.

    Google Scholar 

  32. Wang, L., Tornquist, P., and Bill, A. 1997. Glucose metabolism in pig outer retina in light and darkness. Acta. Physiol. Scand. 160:75–81.

    Google Scholar 

  33. Lin, H., la Cour, M., Andersen, M. V., and Miller, S. S. 1994. Proton-lactate cotransport in the apical membrane of frog retinal pigment epithelium. Exp. Eye. Res. 59:679–688.

    Google Scholar 

  34. Bergersen, L., Johannsson, E., Veruki, M. L., Nagelhus, E. A., Halestrap, A., Sejersted, O. M., and Ottersen, O. P. 1999. Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neuroscience 90:319–331.

    Google Scholar 

  35. Poitry-Yamate, C. L., Poitry, S., and Tsacopoulos, M. 1995. Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15:5179–5191.

    Google Scholar 

  36. Tsacopoulos, M., Poitry-Yamate, C. L., MacLeish, P. R., and Poitry, S. 1998. Trafficking of molecules and metabolic signals in the retina. Prog. Retin. Eye. Res. 17:429–442.

    Google Scholar 

  37. Poitry, S., Poitry-Yamate, C., Ueberfeld, J., MacLeish, P. R., and Tsacopoulos, M. 2000. Mechanisms of glutamate metabolic signaling in retinal glial (Müller) cells. J. Neurosci. 1:1809–1821.

    Google Scholar 

  38. Lang, E. J., Sugihara, I., Welsh, J. P., and Llinas, R. 1999. Patterns of spontaneous purkinje cell complex spike activity in the awake rat. J. Neurosci. 19:2728–2739.

    Google Scholar 

  39. Landsend, A. S., Amiry-Moghaddam, M., Matsubara, A., Bergersen, L., Usami, S., Wenthold, R. J., and Ottersen, O. P. 1997. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J. Neurosci. 17:834–842.

    Google Scholar 

  40. Bergersen, L., Waerhaug, O., Helm, J., Thomas, M., Laake, P., Davies, A. J., Wilson, M. C., Halestrap, A. P., and Ottersen, O. P. 2001. A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp. Brain Res. 136:523–534.

    Google Scholar 

  41. Gerhart, D. Z., Enerson, B. E., Zhdankina, O. Y., Leino, R. L., and Drewes, L. R. 1998. Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia 22:272–281.

    Google Scholar 

  42. McKenna, M. C., Sonnewald, U., Huang, X., Stevenson, J., Johnsen, S. F., Sande, L. M., and Zielke, H. R. 1998. Alphaketoisocaproate alters the production of both lactate and aspartate from [U-13C]glutamate in astrocytes: a 13C NMR study. J. Neurochem. 70:1001–1008.

    Google Scholar 

  43. Chaudhry, F. A., Lehre, K. P., van Lookeren Campagne, M., Ottersen, O. P., Danbolt, N. C., and Storm-Mathisen, J. 1995. Glutamate Transporters in Glial Plasma Membranes: Highly Differentiated Localizations Revealed by Quantitative Ultrastructural Immunocytochemistry. Neuron. 15:711–720.

    Google Scholar 

  44. Hassel, B. and Sonnewald, U. 1995. Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J. Neurochem. 65: 2227–2234.

    Google Scholar 

  45. Palay, S. L. and Chan-Palay, V. 1974. Cereballar cortex: cytology and organization. Springer, Berlin Heidelberg New York.

    Google Scholar 

  46. Leino, R. L., Gerhart, D. Z., Duelli, R., Enerson, B. E., and Drewes, L. R. 2001. Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem. Int. 38:519–527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergersen, L., Rafiki, A. & Ottersen, O.P. Immunogold Cytochemistry Identifies Specialized Membrane Domains for Monocarboxylate Transport in the Central Nervous System. Neurochem Res 27, 89–96 (2002). https://doi.org/10.1023/A:1014806723147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014806723147