Abstract
An efficient exchange of lactate between different cell types (such as astrocytes and neurones) would require that lactate transporters are expressed in contiguous parts of the respective plasma membranes. To settle this issue we explored the subcellular expression pattern of monocarboxylate transporters (MCTs) by use of selective antibodies and high resolution immunogold cytochemistry. We investigated whether the membrane domains containing MCT1, MCT2 and MCT4 are spatially related to each other and to other membrane domains, i.e. those containing glutamate receptors. We used retina and cerebellum as a model for our investigations. We found that MCT1 was localized in the apical membrane of pigment epithelial cells and in the photoreceptor inner segment membrane in the retina. In the brain MCT1 was present in endothelial cells. MCT2 was localized in the postsynaptic membrane of parallel fiber-Purkinje cell synapses and MCT4 was situated in the membrane of glial cells in the cerebellum.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.REFERENCES
Poole, R. C. and Halestrap, A. P. 1993. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264:C761–C782.
Halestrap, A. P. and Price, N. T. 1993. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264:761–782.
Schurr, A. and Rigor, B. M. 1998. Brain anaerobic lactate production: a suicide note or a survival kit? Dev. Neurosci. 20:348–357.
Juel, C. 1997. Lactate-proton cotransport in skeletal muscle. Physiol. Rev. 77:321–358.
Juel, C. 1998. Muscle pH regulation: role of training. Acta Physiol. Scand. 162:359–366.
Poole, R. C. and Halestrap, A. P. 1992. Identification and partial purification of the erythrocyte L-lactatetransporter. Biochem. J. 283:855–862.
Poole, R. C. and Halestrap, A. P. 1994. N-terminal protein sequence analysis of the rabbit erythrocyte lactate transporter suggests identity with the cloned monocarboxylate transport protein MCT1. Biochem. J. 303:755–759.
Kim, C. M., Goldstein, J. L., and Brown, M. S. 1992. cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J. Biol. Chem. 15:23113–23121.
Garcia, C. K., Goldstein, J. L., Pathak, R. K., Anderson, R. G., and Brown, M. S. 1994. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 76:865–873.
Jackson, V. N., Price, N. T., and Halestrap, A. P. 1995. cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle. Biochim. Biophys. Acta. 13:193–196.
Takanaga, H., Tamai, I., Inaba, S., Sai, Y., Higashida, H., Yamamoto, H., and Tsuji, A. 1995. cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter. Biochem. Biophys. Res. Commun. 5:370–377.
Koehler-Stec, E. M., Simpson, I. A., Vannucci, S. J., Landschulz, K. T., and Landschulz, W. H. 1998. Monocarboxylate transporter expression in mouse brain. Am. J. Physiol. 275:E516–E524.
Carpenter, L., Poole, R. C., and Halestrap, A. P. 1996. Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettre tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function. Biochim. Biophys. Acta. 1279:157–163.
Shimozono, M., Scofield, M. A., and Wangemann, P. 1997. Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis. Hear Res. 114:213–222.
Garcia, C. K., Brown, M. S., Pathak, R. K., and Goldstein, J. L. 1995. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J. Biol. Chem. 270:1843–1849.
Jackson, V. N., Price, N. T., Carpenter, L., and Halestrap, A. P. 1997. Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem. J. 324:447–453.
Gerhart, D. Z., Enerson, B. E., Zhdankina, O. Y., Leino, R. L., and Drewes, L. R. 1997. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am. J. Physiol. 273:E207–E213.
Lin, R. Y., Vera, J. C., Chaganti, R. S., and Golde, D. 1998. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J. Biol. Chem. 273:28959–28965.
Juel, C. and Halestrap, A. P. 1999. Lactate transport in skeletal muscle-role and regulation of the monocarboxylate transporter. J. Physiol. (Lond.) 517:633–642.
Price, N. T., Jackson, V. N., and Halestrap, A. P. 1998. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirm the existence of a transporter family with an ancient past. Biochem. J. 329:321–328.
Yoon, H., Fanelli, A., Grollman, E. F., and Philp, N. J. 1997. Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 234:90–94.
Philp, N. J., Yoon, H., and Grollman, E. F. 1998. Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am. J. Physiol. 274:1824–1828.
Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G. 1999. Energy on demand. Science 283:496–497.
Nehlig, A. and Pereira de Vasconcelos, A. 1993. Glucose and ketone body utilization by the brain of neonatal rats. Prog. Neurobiol. 40:163–221.
Cremer, J. E., Cunningham, V. J., Pardridge, W. M., Braun, L. D., and Oldendorf, W. H. 1979. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33:439–445.
Schurr, A., Payne, R. S., Miller, J. J., Tseng, M. T., and Rigor, B. M. 2001. Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia. Brain Res. 895:268–272.
Pellerin, L. and Magistretti, P. J. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. U.S.A. 25:10625–10629.
Walz, W. and Mukerji, S. 1988. Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370.
Hassel, B. and Brathe, A. 2000. Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J. Cereb. Blood Flow Metab. 20:327–336.
Demestre, M., Boutelle, M., and Fillenz, M. 1997. Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamate. J. Physiol. 15:825–832.
Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E., and Ottersen, O. P. 1999. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2:618–624.
Wang, L., Tornquist, P., and Bill, A. 1997. Glucose metabolism in pig outer retina in light and darkness. Acta. Physiol. Scand. 160:75–81.
Lin, H., la Cour, M., Andersen, M. V., and Miller, S. S. 1994. Proton-lactate cotransport in the apical membrane of frog retinal pigment epithelium. Exp. Eye. Res. 59:679–688.
Bergersen, L., Johannsson, E., Veruki, M. L., Nagelhus, E. A., Halestrap, A., Sejersted, O. M., and Ottersen, O. P. 1999. Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neuroscience 90:319–331.
Poitry-Yamate, C. L., Poitry, S., and Tsacopoulos, M. 1995. Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15:5179–5191.
Tsacopoulos, M., Poitry-Yamate, C. L., MacLeish, P. R., and Poitry, S. 1998. Trafficking of molecules and metabolic signals in the retina. Prog. Retin. Eye. Res. 17:429–442.
Poitry, S., Poitry-Yamate, C., Ueberfeld, J., MacLeish, P. R., and Tsacopoulos, M. 2000. Mechanisms of glutamate metabolic signaling in retinal glial (Müller) cells. J. Neurosci. 1:1809–1821.
Lang, E. J., Sugihara, I., Welsh, J. P., and Llinas, R. 1999. Patterns of spontaneous purkinje cell complex spike activity in the awake rat. J. Neurosci. 19:2728–2739.
Landsend, A. S., Amiry-Moghaddam, M., Matsubara, A., Bergersen, L., Usami, S., Wenthold, R. J., and Ottersen, O. P. 1997. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J. Neurosci. 17:834–842.
Bergersen, L., Waerhaug, O., Helm, J., Thomas, M., Laake, P., Davies, A. J., Wilson, M. C., Halestrap, A. P., and Ottersen, O. P. 2001. A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp. Brain Res. 136:523–534.
Gerhart, D. Z., Enerson, B. E., Zhdankina, O. Y., Leino, R. L., and Drewes, L. R. 1998. Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia 22:272–281.
McKenna, M. C., Sonnewald, U., Huang, X., Stevenson, J., Johnsen, S. F., Sande, L. M., and Zielke, H. R. 1998. Alphaketoisocaproate alters the production of both lactate and aspartate from [U-13C]glutamate in astrocytes: a 13C NMR study. J. Neurochem. 70:1001–1008.
Chaudhry, F. A., Lehre, K. P., van Lookeren Campagne, M., Ottersen, O. P., Danbolt, N. C., and Storm-Mathisen, J. 1995. Glutamate Transporters in Glial Plasma Membranes: Highly Differentiated Localizations Revealed by Quantitative Ultrastructural Immunocytochemistry. Neuron. 15:711–720.
Hassel, B. and Sonnewald, U. 1995. Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J. Neurochem. 65: 2227–2234.
Palay, S. L. and Chan-Palay, V. 1974. Cereballar cortex: cytology and organization. Springer, Berlin Heidelberg New York.
Leino, R. L., Gerhart, D. Z., Duelli, R., Enerson, B. E., and Drewes, L. R. 2001. Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem. Int. 38:519–527.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bergersen, L., Rafiki, A. & Ottersen, O.P. Immunogold Cytochemistry Identifies Specialized Membrane Domains for Monocarboxylate Transport in the Central Nervous System. Neurochem Res 27, 89–96 (2002). https://doi.org/10.1023/A:1014806723147
Issue Date:
DOI: https://doi.org/10.1023/A:1014806723147