limma powers differential expression analyses for RNA-sequencing and microarray studies
- PMID: 25605792
- PMCID: PMC4402510
- DOI: 10.1093/nar/gkv007
limma powers differential expression analyses for RNA-sequencing and microarray studies
Abstract
limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures




Similar articles
-
Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2.J Vis Exp. 2021 Sep 18;(175). doi: 10.3791/62528. J Vis Exp. 2021. PMID: 34605806
-
GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data.BMC Bioinformatics. 2021 Dec 23;22(1):610. doi: 10.1186/s12859-021-04461-5. BMC Bioinformatics. 2021. PMID: 34949163 Free PMC article.
-
Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability.PLoS One. 2015 May 12;10(5):e0126545. doi: 10.1371/journal.pone.0126545. eCollection 2015. PLoS One. 2015. PMID: 25966034 Free PMC article.
-
RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR.F1000Res. 2016 Jun 17;5:ISCB Comm J-1408. doi: 10.12688/f1000research.9005.3. eCollection 2016. F1000Res. 2016. PMID: 27441086 Free PMC article.
-
Visualization methods for differential expression analysis.BMC Bioinformatics. 2019 Sep 6;20(1):458. doi: 10.1186/s12859-019-2968-1. BMC Bioinformatics. 2019. PMID: 31492109 Free PMC article.
Cited by
-
ImageGP 2 for enhanced data visualization and reproducible analysis in biomedical research.Imeta. 2024 Sep 12;3(5):e239. doi: 10.1002/imt2.239. eCollection 2024 Oct. Imeta. 2024. PMID: 39429882 Free PMC article.
-
Proteomic analysis of extracellular vesicles derived from canine mammary tumour cell lines identifies protein signatures specific for disease state.BMC Vet Res. 2024 Oct 26;20(1):488. doi: 10.1186/s12917-024-04331-1. BMC Vet Res. 2024. PMID: 39462388 Free PMC article.
-
Construction of a Wilms tumor risk model based on machine learning and identification of cuproptosis-related clusters.BMC Med Inform Decis Mak. 2024 Nov 4;24(1):325. doi: 10.1186/s12911-024-02716-8. BMC Med Inform Decis Mak. 2024. PMID: 39497055 Free PMC article.
-
A Potential Autophagy-Related Competing Endogenous RNA Network and Corresponding Diagnostic Efficacy in Schizophrenia.Front Psychiatry. 2021 Feb 23;12:628361. doi: 10.3389/fpsyt.2021.628361. eCollection 2021. Front Psychiatry. 2021. PMID: 33708146 Free PMC article.
-
Impact of the menstrual cycle and ethinyl estradiol/etonogestrel contraceptive vaginal ring on granulysin and other mucosal immune mediators.Am J Reprod Immunol. 2021 Aug;86(2):e13412. doi: 10.1111/aji.13412. Epub 2021 Mar 16. Am J Reprod Immunol. 2021. PMID: 33641250 Free PMC article. Clinical Trial.
References
-
- Smyth G. Limma: linear models for microarray data. In: Gentleman R., Carey V., Dudoit S., Irizarry R., Huber W., editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York: Springer; 2005. pp. 397–420.
-
- Caiazzo M., Dell'Anno M.T., Dvoretskova E., Lazarevic D., Taverna S., Leo D., Sotnikova T.D., Menegon A., Roncaglia P., Colciago G., et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476:224–227. - PubMed
-
- Hubert F., Kinkel S., Crewther P., Cannon P., Webster K., Link M., Uibo R., O'Bryan M., Meager A., Forehan S., et al. Aire-deficient c57bl/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype. J. Immunol. 2009;182:3902–3918. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous