Skip to main content
Log in

Electrodeposition of Ni–Cu alloys at high current densities: details of the elements distribution

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report results from an experimental and modeling study of the far-from-equilibrium electrodeposition of Ni–Cu alloys by changing systematically the current density with focus on the surface structuring and surface content of the elements. General finding is that Cu prevails in the convex regions of the deposit, while Ni prevails in the concave ones. No deposition of a monophase is observed by the XRD analyses—in all samples are registered two phases under the form of solid solutions of Cu and Ni. With the increasing current density, the percentage of the major component increases towards deposition of pure Cu and Ni. Some oscillations of the overpotential with the current density are correlated with the Cu content in the Cu-rich solid solution. An original model based on Cellular Automata (CA) rationalizes the hypothesis that during their simultaneous deposition, Cu preserves the diffusion-limited growth mode, while the Ni discharges in a kinetically controlled one. The model is expected to be valid for lower current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Goranova D, Avdeev G, Rashkov R (2014) Electrodeposition and characterization of Ni–Cu alloys. Surf Coat Technol 240:204–210

    Article  Google Scholar 

  2. Solmaz R, Döner A, Kardaş G (2008) Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem Commun 10:1909–1911

    Article  Google Scholar 

  3. Yin Z, Chen F (2014) A facile electrochemical fabrication of hierarchically structured nickel-copper composite electrodes on nickel foam for hydrogen evolution reaction. J Power Sour 265:273–281

    Article  Google Scholar 

  4. Ngamlerdpokin K, Tantavichet N (2014) Electrodeposition of nickel-copper alloys to use as a cathode for hydrogen evolution in an alkaline media. Int J Hydrog Energy 39:2505–2515

    Article  Google Scholar 

  5. Jaron A, Zurek Z (2010) New porous Fe64/Ni36 and Ni70/Cu30 electrodes for hydrogen evolution—production and properties. Solid State Ion 181(21–22):976–981

    Article  Google Scholar 

  6. Sinfelt JH, Carter J, Yates D (1972) Catalytic hydrogenolysis and dehydrogenation over copper–nickel alloys. J Catal 24(2):283–296

    Article  Google Scholar 

  7. Durivault L, Brylev O, Reyter D, Sarrazin M, Bélanger D, Roué L (2007) Cu-Ni materials prepared by mechanical milling: their properties and electrocatalytic activity towards nitrate reduction in alkaline medium. J Alloy Compd 432(1–2):323–332

    Article  Google Scholar 

  8. Yousef A, Barakat NA, El-Newehy M, Kim HY (2012) Chemically stable electrospun Ni–Cu nanoroads@carbon nanofibers for highly efficient dehydrogenation of ammonia borane. Int J Hydrog Energy 37(23):17715–17723

    Article  Google Scholar 

  9. Wei Q, Wang Q, Wang H et al (2015) Formation of flowerlike gold nanostructure on ordered mesoporous carbon electrode and its application in electrochemical determination of ractopamine. Mater Lett 147:58–60

    Article  Google Scholar 

  10. Liu M, Wang S, Chen T et al (2015) Performance of the nano-structured Cu-Ni (alloy) –CeO2 anode for solid oxide fuel cells. J Power Sour 274:730–735

    Article  Google Scholar 

  11. Mattarozzi L, Cattarin S, Comisso N et al (2014) Hydrogen evolution assisted electrodeposition of porous Cu–Ni allys electrodes and their use for nitrate reduction in alkani. Electrochim Acta 140:337–344

    Article  Google Scholar 

  12. Yin J, Park J (2014) Electrochemical investigation of copper/nickel oxide composites for supercapacitor applications. Int J Hydrog Energy 39(29):16562–16568

    Article  Google Scholar 

  13. Lee JM, Lee SH, Ko JS (2015) Influence of open area ratio on microstructure shape in Cu-Ni alloy electrodeposition. Appl Phys A 118(2):579–585

    Article  Google Scholar 

  14. Lee JM, Lee SH, Kim YJ, Ko JS (2013) Effect of the diffusion rate of copper ions on the co-electrodeposition of copper and nickel. Int J Precis Eng Manuf 14(11):2009–2014

    Article  Google Scholar 

  15. Lee JM, Bae KM, Jung KK, Jeong JH, Ko JS (2014) Creation of microstructured surfaces using Cu–Ni composite electrodeposition and their application to superhydrophobic surfaces. Appl Surf Sci 289:14–20

    Article  Google Scholar 

  16. Haciismailoglu M, Alper M (2011) Effect of electrolyte pH and Cu concentration on microstructure of electrodeposited Ni–Cu alloy films. Surf Coat Technol 206(6):1430–1438

    Article  Google Scholar 

  17. Landolt D (1994) Electrochemical and materials science aspects of alloy deposition. Electrochim Acta 39(8–9):1075–1090

    Article  Google Scholar 

  18. Bonet F, Grugeon S, Dupont L, Urbina RH, Guery C, Tarascon J (2003) Synthesis and characterization of bimetallic Ni–Cu particles. J Sol State Chem 172(1):111–115

    Article  Google Scholar 

  19. Munoz A, Salinas D, Bessone J (2003) First stages of Ni deposition onto vitreous carbon from sulfate solutions. Thin Sol Film 429(1–2):119–128

    Article  Google Scholar 

  20. Nouri E, Dolati A (2007) The fractal study of Ni–Cu layer accumulation during electrodeposition under diffusion-limited condition. Mater Res Bull 42(9):1769–1776

    Article  Google Scholar 

  21. Kockar H, Bayirli M, Alper M (2010) A new example of the diffusion-limited aggregation: Ni–Cu film patterns. Appl Surf Sci 256(9):2995–2999

    Article  Google Scholar 

  22. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601–644

    Article  Google Scholar 

  23. Wolfram S (2002) A new kind of science, vol 5. Wolfram Media, Champaign

    Google Scholar 

  24. D’Souza RM, Margolus NH (1999) Thermodynamically reversible generalization of diffusion limited aggregation. Phys Rev E 60(1):264–274

    Article  Google Scholar 

  25. Krasteva A, Popova H, Krzyżewski F, Załuska-Kotur M, Tonchev V, Unstable vicinal crystal growth from cellular automata. arxiv preprint arXiv:1511.04392v2.(2015)

  26. Krzyżewski F, Załuska-Kotur M, Krasteva A, Popova H,Tonchev V (2016) Step bunching and macrostep formation in 1D atomistic scale model of unstable vicinal crystal growth. arxiv preprint arXiv:1601.07371

  27. Motoyama M, Fukunaka Y, Sakka T, Ogata Y (2006) Effect of surface pH on electrodeposited Ni films. J Electrochem Soc 153(7):C502–C508

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Alexander Kolevski, MD (Alexandrovska hospital–Sofia) and Hristina Popova (IPC–BAS) for their continuous interest in this study. VT and DG acknowledge the partial financial support of Grant from Bulgarian NSF No. T02-8/121214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Tonchev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goranova, D., Rashkov, R., Avdeev, G. et al. Electrodeposition of Ni–Cu alloys at high current densities: details of the elements distribution. J Mater Sci 51, 8663–8673 (2016). https://doi.org/10.1007/s10853-016-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0126-y

Keywords