Abstract
Context
While several studies have assessed the potential effect of intermittent fasting on reducing cardiovascular risks, the findings are inconclusive.
Objective
To compare the relative effectiveness of intermittent fasting methods in reducing key cardiovascular risks.
Methods
Studies were searched from Medline, Embase, Cochrane Library Central and Global Health to identify studies that enrolled adults (≥ 18 years) to intermittent fasting methods and reported effects on one of the six specified cardiovascular risk factors. We performed a random-effects network meta-analysis using a frequentist framework. Outcomes were reported as mean differences (MD) with their corresponding 95% confidence intervals (CI).
Results
Fifty-six studies were included in the analysis. With high certainty of evidence, modified alternate-day fasting was found to be the most effective intervention compared to a usual diet in reducing body weight (MD= -5.18 kg; 95% CI: -7.04, -3.32), waist circumference (-3.55 cm; -5.66, -1.45), systolic blood pressure (-7.24 mmHg; -11.90, -2.58), diastolic blood pressure (-4.70 mmHg; -8.46, -0.95). With high certainty, time-restricted eating was the most effective intervention compared to usual diet in reducing fat-free mass (-0.82 kg; -1.46, -0.17), waist circumference (-3.00 cm; -4.50, -1.51), diastolic blood pressure (-3.24 mmHg; -4.69, -1.79) and fasting plasma glucose (-3.74 mg/dL; -6.01, -1.46).
Conclusions
Modified alternate-day fasting, and time-restricted eating appear to be promising approaches for reducing most cardiovascular risk factors. These intermittent fasting methods may be considered as potential components of lifestyle interventions aimed at managing cardiovascular disease risk factors. However, further long-term randomised controlled trials comparing intermittent fasting methods are needed to confirm their efficacy and assess their safety over time.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
Introduction
Cardiovascular diseases (CVD) are a leading cause of morbidity and mortality worldwide, affecting individuals in high-income as well as low-and middle-income countries [1]. The main contributors to the major cardiovascular diseases (ischemic heart disease and stroke) include overweight or obesity, high blood pressure, high blood glucose, and dyslipidaemia [1, 2]. Behavioural modification including dietary intake and physical activity is an important approach to mitigate cardiometabolic risk factors such as overweight or obesity, high blood pressure, elevated cholesterol levels and blood glucose [3, 4]. Weight control through energy restriction has been shown to improve cardiovascular risks including insulin resistance, blood glucose, and blood pressure [5].
Intermittent fasting, which includes a range of approaches to achieve overall energy restriction, has emerged as an appealing alternative to continuous energy restriction (CER) for managing obesity and its related comorbidities due to its relative ease of maintaining long-term adherence [6, 7]. Intermittent fasting refers to dietary patterns that involve cycling between periods of eating and periods of fasting [8]. This creates periods of energy deficit, and metabolic change which can potentially leading to health benefits, including weight loss, improved insulin sensitivity, and better overall metabolic health [6, 9].
Among the many methods of intermittent fasting, some of the most adopted include alternate-day fasting (ADF), modified alternate day fasting (mADF), periodic fasting (PF), and time-restricted eating (TRE) [6, 10]. ADF is cyclic eating approach involves a 24-hour period of complete fasting (no calorie intake) followed by a 24-hour period of normal eating [8, 11]. The mADF is like ADF but allows for some calorie intake on fasting days (25% or less intake of energy) [8, 11]. PF is a cyclical weekly eating pattern with fasting for one or two days per week (consumption of 25% or less of required calories or restricting calorie intake to around 500–600 kcal/day) and then eating normally for the remaining five or six days a week. The 5:2 diet is a popular form of PF [8, 12].TRE involves complete fasting (no calorie intake) for at least 12 h per day and eating freely the rest of the time [8, 12]. TRE involves limiting the daily eating window to a specific period, for example, an individual might eat all meals within an 8-hour window (e.g., 12:00 pm to 8:00 pm) and fast for the remaining 16 h each day (16/8 method). The most common TRE methods are the 16/8 and 14/10 method [8, 12].
Previous pairwise meta-analysis studies have shown some promise for intermittent fasting in reducing risk factors for cardiovascular disease. However, the results are not consistent [8, 11, 13]. Some meta-analyses suggest that intermittent fasting is more effective than usual eating pattern in reducing weight and waist circumference [11,12,13,14]. However, others showed no significant difference between intermittent fasting and CER for these measures [15, 16]. Regarding fat-free mass, there is no clear conclusion on whether intermittent fasting leads to undesirable loss of muscle mass. Some studies found no effect [13, 16], while others showed an increase [17] or decrease [15] compared to usual diet. Findings on blood pressure are also inconsistent. Some meta-analyses suggest intermittent fasting reduces systolic blood pressure (SBP) and diastolic blood pressure (DBP) compared to usual eating [11, 12], while others found no significant difference [13, 14]. Similarly, some studies showed intermittent fasting reduced fasting blood sugar [11, 14] and low-density lipoprotein (LDL) cholesterol [18], but others found no significant difference compared to usual eating on fasting plasma glucose (FPG) [13] and LDL reduction [11, 12, 14]. The inconsistencies of results across the previous meta-analyses could be due to differences in terms of the population, the intervention duration (some included short duration studies) [12,13,14] and number of studies included [12,13,14]. Further, some conducted the analyses by combining all intermittent fasting methods together [11, 12, 16].
Since conventional pairwise meta-analysis is often limited by comparing two intervention at a time and cannot incorporate indirect evidence, there remains considerable uncertainty about which intermittent fasting methods are the most effective for improving cardiovascular health [19]. An alternative approach is network meta-analysis (NMA) which allows statistical comparison of three or more interventions that have not been directly compared in randomised controlled trials (RCTs) (19). Furthermore, NMA has the potential to enhance the precision of effect estimates derived from RCTs and traditional pairwise meta-analyses by integrating both direct and indirect evidence (19). This method offers a more thorough understanding of relative effectiveness and allows for the ranking of intermittent fasting methods, which is not possible with conventional pairwise meta-analysis. The aim of this systematic review and network meta-analysis was to assess the relative effectiveness of different intermittent fasting methods in improving key cardiovascular risk factors, including body weight, waist circumference, fat free mass, elevated blood pressure, FPG, low density lipoprotein cholesterol.
Methods
The protocol was registered at PROSPERO (CRD42023475279), and the NMA was reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis for Network Meta-Analyses (PRISMA-NMA) guidelines [20] (see supplementary material (S1).
Search Strategy
We searched four databases: Medline, Embase, Cochrane Library, and Global Health—from inception to November 09, 2023, and the search was updated up to December 11, 2024. We also performed manual searches of references from relevant reviews and eligible studies. The key search terms include a combination of “intermittent fasting” or “alternate day fasting” or “periodic fasting” or “time restricted eating /feeding” or “intermittent energy restriction” and body weight or waist circumference or fat-free mass or blood pressure or SBP or DBP or LDL or fasting plasma/blood glucose. The full search strategy is presented in the supplementary material (S2). The search was limited to RCTs, published in English. There was no limitation on publication date or location. Search results were exported to Covidence for duplicate removal, screening and data extraction.
Eligibility Criteria
We developed the eligibility criteria based on the PICOS framework (Participants, Interventions, Comparisons, Outcomes, and Study design). All inclusion and exclusion criteria are summarised in Table 1. This systematic review and network meta-analysis included only RCTs.
Screening and Data Extraction
Three independent reviewers conducted the title and abstract screening: KTK screened all, TKT screened 69%, and YMM screened 31%. KTK performed the full-text review, with TKT double-checking 20%, applying the inclusion and exclusion criteria. Any discrepancies between the reviewers were resolved through discussion and consensus. The step-by-step procedure of identifying, screening, and incorporating or excluding studies presented using the PRISMA 2020 flow diagram (Fig. 1). Data were extracted using a pretested data abstraction form. The following information was extracted from each eligible study: first author, publication year, country, the intervention duration, sample size, participant characteristics (sex, age, BMI) and outcomes measured, intervention or intermittent fasting type (s), control group diet, number of participants in each group (treatment and control group). If intermittent fasting outcomes were reported at multiple time points, we extracted data from the last reported time point or the end of the intervention.
For studies reporting pre- and post-intervention measures, we calculated mean differences and standard deviations using Cochrane Handbook methods [21]. Missing standard deviations were estimated from standard errors or confidence intervals. For studies that reported only medians and interquartile ranges, means were estimated using the Wan method [22]. In cases the data were only available in figures, numerical data was obtained using Plot Digitiser (https://plotdigitizer.com/app).
Risk of Bias Assessment
We assessed the risk of bias using the Cochrane Collaboration’s Risk of Bias 2 (Rob 2) tool for RCTs [23]. This tool comprises five bias components: bias in the randomization process, bias resulting from deviations in intended interventions, bias due to missing outcome data, bias in the measurement of outcomes, and bias in the selection of reported results. Each study was assessed and categorised according to its risk of bias into three levels (low risk of bias, some concerns, or high risk of bias), for each domain evaluated. A study was deemed to have a low overall risk of bias if all domains were rated as having a low risk of bias. Conversely, a study was considered to have a high risk of bias if at least one domain is rated as high risk, or if three and more domains were categorised as having ‘some concerns’. A study would fall into the ‘some concerns’ category overall if one or two of the domains are rated as having some concerns, but none were classified as high risk of bias [23].
Grading the Certainty of Evidence
We assessed the certainty of the evidence using Grading of Recommendation Assessment, Development, and Evaluation (GRADE) approach [24]. We classified the certainty of evidence as high, moderate, low, or very low. RCTs initially receive a high grade; however, this grade may be downgraded due to the following specific criteria: the presence of risk of bias (weight assigned to study as assessed by the RoB2 tool); inconsistency (significant unexplained variation among study results, indicated by I2), indirectness (limitations in the generalizability of the results); imprecision (wide 95% confidence intervals for effect estimates or crossing a null value); incoherence (differences between direct and indirect estimates that contribute to a network estimate); and publication bias (significant evidence of small-study effects) [24,25,26].
Statistical Analysis
We performed a random-effects network meta-analysis using a frequentist framework to the compare the effectiveness of different intermittent fasting methods on cardiovascular disease risks. We chose the frequentist approach over a Bayesian framework for its computational efficiency and straightforward implementation using standard statistical software. Additionally, the frequentist method provides robust and interpretable estimates without requiring prior distributions, which were not available for all comparisons in our network. We reported outcomes as mean differences (MD) with their 95% confidence intervals (CI). We created the network geometry diagrams to explore networks of intervention comparisons. The size of the nodes, representing each intervention, reflects total number of participants while the thickness of the lines connecting any two nodes illustrates the number of intervention comparisons. The incoherence assumption was checked by using a statistical test (network node-splitting method). In a closed-loop network, the node-splitting method was used to test incoherence between direct and indirect intervention comparisons [27]. We assessed incoherence by comparing the similarity of point estimates, checking for overlapping 95% confidence intervals, and ensuring non-significant p-values.
Transitivity was ensured by including only RCTs with comparable populations, interventions, and outcomes, and verifying that all included studies could be meaningfully compared based on shared treatment nodes. Multilevel meta-analysis was not conducted due to the primary focus on treatment comparisons across studies rather than variability within individual trials.
The relative rankings of all intermittent fasting methods for each outcome were determined by estimating ranking probabilities using ranking plots and the surface under the cumulative ranking curve (SUCRA) [28, 29].
Classification of Intermittent Fasting Methods as More and Less Effective Intervention
Using a new GRADE approach, we analysed NMA results by classifying intermittent fasting interventions from the most to least effective [30] for each outcome. The new GRDAE approach considers three factors: effect size from the NMA, evidence certainty, and SUCRA (ranking) values [30]. We first categorised evidence quality into high (moderate-to-high) and low (low-to-very-low) certainty. Within each category, intermittent fasting method were divided based on their effect on outcomes: (1) Most Effective: intermittent fasting method with the largest reduction in outcomes compared to the usual diet and superior to at least one moderately effective method; (2) Moderately Effective: intermittent fasting method better than the usual diet but not as effective as the most effective method; (3) Least Effective: intermittent fasting method similar to the usual diet, with confidence intervals crossing zero.
Sensitivity Analysis
We conducted sensitivity analysis to assess the stability or robustness of the pooled effect size by restricting the analysis to studies with medium to long-term intervention durations, some concern or low risk of bias, and studies that did not include participants with diabetes.
Data analysis was conducted using Stata version 18.0 (StataCorp, College Station, TX) [31], and all graphical displays were generated using the tools developed by Chaimani et al. and White [31, 32].
Results
Study Selection and Characteristics
A total of 5993 articles were identified, resulting in the inclusion of 56 studies [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88] (Fig. 1). These 56 studies were conducted between 2013 and 2024 with a sample size ranging from 18 to 222 and totalling 3,965 participants. The studies were carried out in 16 different countries, including the USA (n = 17), Australia (n = 8), China (n = 6), and Norway (n = 4). The duration of interventions varied from 4 weeks to 104 weeks. Of the 56 studies, seven were three-arm while the rest were two-arm studies. The mean age of participants was 45.0 (SD 10.1) years (see details in Table 2).
Risk of Bias
Out of the 56 RCTs, 21 (37.5%) studies were determined to have an overall high risk of bias while 12 (21.4%) studies were rated as overall low risk of bias (Fig. 2). The most common source of bias was related to the randomisation process (high risk, n = 13; some concern, n = 21) followed by bias due to missing outcome data (high risk, n = 5; some concern, n = 13). Detailed risk of bias assessment results is presented in Supplementary Fig. S1.
Certainty of Evidence and Intervention Classifications
The GRADE assessment details for all outcomes are presented in supplementary Tables S1 A-G. Figure 3 and supplementary Table S2 presents the classification of all interventions for each outcome based on the new GRADE certainty of evidence framework.
The summary of results network meta-analysis of intermittent fasting regimes (mean difference with 95% CI) in comparison with usual diet for all outcomes along with ranking by new GRADE certainty of evidence framework. Note: mADF = modified alternate day fasting; ADF = alternate day fasting; CER = continuous energy restriction; PF = periodic fasting; TRE time restricted eating
Comparative Effectiveness of Intermittent Fasting
Body Composition
Body Weight
A total of 52 studies reported weight change after intermittent fasting intervention with a total of 3241 participants. Most of the 52 comparisons were between CER vs. PF (n = 14) followed by TRE vs. usual diet (n = 14) (Fig. 4A and Supplementary Table S3). The inconsistency analysis revealed the absence of global inconsistency (Supplementary Fig. S2A) and local inconsistency (Supplementary Table S4). Compared to TRE, mADF (MD= -3.24 kg, 95% CI -5.29 to − 1.20, high certainty evidence) effective intervention in reducing weight.
Network plots of the direct comparisons between intermittent fasting interventions from head-to-head trials for the outcomes: (A) Weight; (B) Fat free mass; (C) Waist circumference; (D) LDL-cholesterol; (E) Systolic blood pressure; (F) Diastolic blood pressure; (G) Fasting plasma glucose. The sizes of nodes correspond to the number of participants randomized to the intermittent fasting methods and the width of line corresponds to the number of studies. Note: mADF = modified alternate day fasting; ADF = alternate day fasting; CER = continuous energy restriction; PF = periodic fasting; TRE time restricted eating
When compared to usual diet mADF (MD=-5.18 kg; 95% CI: -7.04 to − 3.22, high certainty evidence), ADF (-4.27 kg; -6.12 to -2.42, high certainty evidence), PF (-3.82 kg; -5.44, -2.21, high certainty evidence), CER (-3.42 kg; -4.73 to -2.11, high certainty evidence), and TRE (-1.93 kg; -3.06, -0.81, moderate certainty evidence) significantly reduced body weight (Fig. 5A, Supplementary Table S1).
Intermittent fasting network meta-analysis results (mean difference with 95% CI) with corresponding GRADE certainty of evidence for: Weight in kg (A); Fat-free mass in kg (B); Waist circumference in cm (C); Low density lipoprotein-LDL in mg/dL (D); Systolic blood pressure -SBP in mmHg (E); Diastolic blood pressure - DBP in mmHg (F); Fasting plasma glucose– FPG in mg/dL (G). Values in bold indicate a statistically significant effect. Colour coding indicates the GRADE certainty of evidence: green = high certainty, blue = moderate certainty. Note: mADF = modified alternate day fasting; ADF = alternate day fasting; CER = continuous energy restriction; PF = periodic fasting; TRE time restricted eating
Among the intermittent fasting methods with high or moderate certainty of evidence, compared to a usual diet, mADF was the most effective, whereas CER, TRE, ADF and PF were among the interventions with intermediate effectiveness in reducing body weight compared to usual diet (Fig. 3 and Supplementary Table S2, Supplementary Fig. S3A).
Fat Free Mass
Change in fat-free mass was reported in 32 studies with a total of 2045 participants. Most comparation were between PF vs. CER (n = 10), followed by TRE vs. usual diet (n = 6) (Fig. 4 and Supplementary Table S3). Both the global inconsistency test (Supplementary Fig. S2B) and the local inconsistency test supported the consistency of the direct and indirect estimates (Supplementary Table S4).
Compared to usual diet, TRE (MD= -0.82 kg; 95% CI: -1.46 to -0.17, moderate certainty evidence), PF (-0.80 kg; -1.58 to -0.02, high certainty of evidence) significantly reducing fat-free mass (Fig. 5B and Supplementary Table S1). Among intermittent fasting methods with high or moderate certainty of evidence, compared to a usual diet, TRE, and PF were the most effective for fat free mass reduction, whereas mADF and ADF was not better than usual diet (Fig. 3, Supplementary Table S2, Supplementary Fig. 3B).
Waist Circumference
Most of the 22 comparisons were between CER vs. PF (n = 7), CER VS mADF(n = 3) and TRE vs. usual diet (n = 3) (Fig. 4C and Supplementary Table S3). The global and local inconsistency test indicated no violation of the consistency assumption for direct and indirect estimates (Supplementary Fig. 2C and Supplementary Table S3).
Compared to usual diet with high certainty of evidence, mADF (MD= -3.55 cm; 95% CI: -5.66 to -1.45), CER (-1.78 cm; -3.23, -0.34), PF (-2.77 cm; -4.47, -1.07) and TRE (-3.00 cm; -4.50, -1.51) significantly reduced waist circumference (Fig. 5C and Supplementary Table S1). However, there were no statistically significant differences among the other comparisons (Fig. 5C). Among the intermittent fasting methods with high or moderate certainty of evidence, compared to a usual diet, mADF, CER, TRE, and PF were the most effective for fat free mass reduction, whereas ADF was probably among least effective (not better than usual diet) (Fig. 3, Supplementary Table S2, Supplementary Fig. S3C).
LDL Cholesterol
Change in LDL cholesterol levels were reported in 35 articles with a total of 2488 participants, and most comparisons were TRE vs. usual diet (n = 10) and CER vs. usual diet (n = 9) (Fig. 4D and Supplementary Table S3). With high certainty of the evidence, PF (MD= -6.80 mg/dL; 95% CI: -12.59, -1.00) was associated with a significant reduction in LDL level compared to usual diet; however, there were no significant differences among the other comparisons (Fig. 5D and Supplementary Table S1). Among the intermittent fasting methods with high or moderate certainty of evidence, compared to a usual diet, PF was among the most effective, while mADF, CER, TRE and ADF were not better than usual diet for LDL reduction (Fig. 3 and Supplementary Table S2, Supplementary Fig. S3D).
Blood Pressure
Systolic Blood Pressure (SBP)
SBP was reported in 27 studies, with a total of 1852 participants. Most of the 27 comparisons were CER vs. usual diet (n = 7) and TRE vs. usual diet (n = 6). With high certainty, mADF (-6.08 mmHg; -11.83 to -0.32) was more effective in reducing SBP compared to ADF. Compared to usual diet with high certainty of evidence, mADF (MD= -7.24 mmHg; 95%CI: -11.90 to -2.58), CER (-4.55 mmHg; -6.82 to -2.27), PF (-3.17 mmHg; -6.01 to -0.32) and TRE (-3.18 mmHg; -5.22 to -1.13) significantly reduced SBP (Fig. 5E and Supplementary Table S1). Among the intermittent fasting methods with high or moderate certainty of evidence, compared to a usual diet, mADF, CER, TRE, and PF were the most effective for SBP reduction, whereas ADF was not better than usual diet (Fig. 3, Supplementary Table S2, Supplementary Fig. S3E).
Diastolic Blood Pressure (DBP)
DBP was reported in 27 studies, with a total of 1861 participants, and most compared CER vs. usual diet (n = 7) and TRE vs. usual (n = 6). Compared to ADF, mADF (-5.19 mmHg; -9.61 to -0.78, high certainty evidence), TRE (-3.73 mmHg; -6.49 to -0.98, high certainty evidence), PF (-3.40 mmHg; -6.34 to -0.45, high certainty evidence) are more effective in reducing DBP. Compared to usual diet with high certainty of evidence, mADF (MD= -4.70 mmHg; 95%CI: -8.46 to -0.95), CER (2.66 mmHg; -4.11 to -1.22), PF (-2.90 mmHg; -4.79 to -1.02) and TRE (-3.24 mmHg; -4.69 to -1.79) significantly reduced DBP (Fig. 4F and Supplementary Table S1). Among the intermittent fasting methods with high or moderate certainty of evidence, compared to a usual diet, mADF, CER, TRE, and PF were the most effective for DBP reduction (Fig. 3, Supplementary Table S2, Supplementary Fig. S3F).
Fasting Plasma Glucose (FPG)
A total of 36 studies reported FPG change after intermittent fasting intervention involving a total of 2428 participants. Most comparison were TRE vs. usual diet (10) and PF vs. CER (n = 9) (Fig. 4 and Supplementary Table S3). The inconsistency examination revealed the absence of global inconsistency and local inconsistency (Supplementary Fig. S2G and Supplementary Table S4). With high certainty, TRE (-3.46 mg/dL; -6.34, -0.57) are more effective than CER in reducing FPG. Similarly, TRE (-3.61 mg/dL; -7.04, -0.19) with high certainty is effective in reducing FPG compared to PF. Relative to usual diet with high certainty of evidence, TRE (-3.74 mg/dL; -6.01, -1.46) significantly reduced FPG (Fig. 5G and Supplementary Table S1). Among the intermittent fasting methods with high or moderate certainty of evidence, compared to a usual diet, TRE was probably the most effective; mADF, PF, and ADF probably among least effective intermittent fasting methods (not better than usual diet) for FPG reduction (Fig. 3 and Supplementary Table S2, Supplementary Fig. S3G).
Sensitivity Analysis
Excluding Studies with Participants with Diabetes
Compared to the main analysis, the effects of intermittent fasting on body weight, FPG, SBP, and DBP remained similar in magnitude and direction. However, the previously significant effects of mADF and CER on waist circumference was no longer observed. Additionally, the positive effects of PF on waist circumference and fat-free mass were no longer statistically significant (Supplementary Fig. S4).
Excluding Studies with High-Risk of Bias
The size and direction of the network estimates for weight, FPG and SBP were consistent with the full analysis in this sensitivity analysis. However, the previously significant effects of PF on waist circumference and LDL, and the effect of mADF on DBP and TRE on fat free mass were no longer significant. Conversely, the effect of CER on fat free mass was statistically significant among this sub-set of higher quality studies (Supplementary Fig. S5).
Excluding Studies with Short Intervention Durations
The size and direction of the network estimates for weight, waist circumference and LDL cholesterol were in line with the full analysis. But the effects of mADF on SBP and DBP, and the effect of TRE on FPG and fat free mass were no longer significant. Conversely, the effect of CER on fat free mass and the effect of mADF on FPG were statistically significant (Supplementary Fig. S6).
Discussion
This systematic review and network meta-analysis synthesised the evidence on the effect of various intermittent fasting methods on cardiovascular disease risk factors using 56 randomised controlled trials conducted between 2013 and 2024. The findings indicated that different intermittent fasting modalities, when compared to a usual diet, significantly reduced body weight, fat-free mass, waist circumference, LDL levels, blood pressure, and FPG. The mADF was found to be the most effective intervention, with high or moderate certainty of the evidence, for the reduction of cardiovascular risk factors including SBP, DBP, weight, and waist circumference. Compared to a usual diet, time-restricted eating was the most effective intermittent fasting regimen for the reduction of fat-free mass and FPG. Moreover, PF was superior to a usual diet in reducing LDL levels. ADF did not show convincing evidence of superiority to a usual diet to reduce cardiovascular risks except for weight. When comparing each other, mADF is more effective than ADF in reducing SBP and DBP. Similarly, TRE and PF are more effective than ADF in reducing DBP. Additionally, TRE is more effective in reducing FPG compared to PF and CER.
The results of this network meta-analysis revealed a significant reduction in body weight across intermittent fasting methods compared to the usual diet, with ADF, mADF, PF, and TRE demonstrating notable effects compared to a usual diet. Likewise, compared to the usual diet, three intermittent fasting methods - mADF, PF, and TRE - significantly reduced waist circumference, a crucial marker of central adiposity. These results align with previous research [11,12,13,14] highlighting the weight management potential of intermittent fasting method. These findings reinforce the potential of intermittent fasting as a viable intervention for weight or waist circumference reduction.
One of the concerns surrounding intermittent fasting is its potential undesirable effect on fat-free mass loss which can impair physical function and cardiometabolic health [15, 89]. However, the evidence regarding this effect was not conclusive. Some studies reported no impact on fat free mass [13, 16], while others indicated an increase in fat-free mass [17], and yet other showed intermittent fasting significantly reduced fat-free mass [15]. Our study revealed a significant reduction in fat-free mass in two intermittent fasting methods (TRE and PF), but no significant reduction in other two intermittent fasting methods (mADF, and ADF). But compared to CER, there is no significant difference in fat-free mass reduction in most intermittent fasting methods. It is important to note that reductions in fat free mass are common across various weight loss strategies [90]. This underscores the necessity for a nuanced understanding of the physiological changes associated with different intermittent fasting strategies.
LDL-cholesterol, as a component of lipid profiles, is another important cardiovascular disease risk factor. Our study found variations in effects on LDL-cholesterol among the different intermittent fasting method. Notably, the PF regimen showed a significant reduction in LDL levels. This aligns with a previous study [18]. However, other studies have not found a consistent effect of intermittent fasting on LDL reduction compared to a usual diet [11, 12, 14].
Our study found significant reductions in both SBP and DBP across multiple intermittent fasting methods, including mADF, PF, and TRE. These findings are partially consistent with previous meta-analyses. Some reported a significant decrease in DBP with intermittent fasting [11, 12], while others did not [13]. Similarly, one meta-analysis found a decrease in DBP with intermittent fasting [11], whereas others showed no effect [13, 14]. These variations highlight the need for further research and potentially personalised approaches to intermittent fasting, considering individual health conditions and risk factors. Another potential benefits of intermittent fasting could be for glycemic control (reduction of blood glucose level). Our study found that TRE method significantly reduced FPG levels. However, these findings are not entirely consistent with previous research. While some meta-analyses reported significant FPG reductions with intermittent fasting [11, 14], others did not observe a significant difference compared to usual eating [13]. The discrepancy could potentially be explained by differences in the duration of the intervention (with some having shorter duration studies) [12,13,14] and number of studies (with some having fewer studies) [12,13,14], as well as some analyse lumped different intermittent fasting method together [11, 12].
The underlying mechanisms of the effect of fasting on cardiovascular risk factors are thought to be mediated, at least in part, by the metabolic switch from carbohydrate utilization to fat and ketones oxidation that happens during fasting [9]. Intermittent fasting causes organs to switch between storing and using energy sources [9]. In conventional eating, carbohydrates and fats get stored in the liver, muscles, and fat tissue. But during fasting, the body burns stored glycogen and fat for energy, resulting in more frequent cycling between storing and burning nutrients compared to constant eating and creates metabolic adaptability and weight reduction [91, 92]. This helps the body become more flexible in using energy, leading to various health benefits, including better insulin sensitivity, increased fat burning, and weight loss [93]. However, more research is needed to understand exactly how specific intermittent fasting patterns affect fat breakdown and turnover and how they influence overall calorie burning.
Strengths and Limitations
This comprehensive systematic review and network meta-analysis employed stringent inclusion and exclusion criteria and included only RCTs. A strength of this review is the ability to compare the relative effectiveness of five commonly used intermittent fasting modalities on a range of cardiovascular disease risk factors, and the certainty of evidence was assessed using the revised version of Cochrane risk of bias assessment tool. This provides valid evidence for decision making and the development of guidance on intermittent fasting. This study incorporated both short-term and long-term studies, and sensitivity analysis was done to assess the robustness of the results. Moreover, in this study, the evidence of certainty has been assessed using the newly validated GRADE framework, which helped to grade the intermittent fasting modalities in a more stringent manner based on a combination of criteria, including effect size, certainty of evidence and SUCRA rankings. Our use of randomized trials strengthens the study’s internal validity but may limit generalizability to real-world settings.
It is essential to note that the lack of direct comparisons between specific intermittent fasting modalities, such as ADF, mADF, TRE, and PF, in our study points towards a gap in the existing literature. The observed risk of bias in 37% of the studies included in our analysis is consistent with the challenges faced by many meta-analyses where the quality of individual studies varies, even though the result remains consistent in the sensitivity analysis. Similarly, the short duration of the included studies might limit the findings, even though the results remain consistent in the sensitivity analysis, except for the effects of mADF on SBP and DBP and the effect of TRE on fat-free mass and FPG, which were no longer significant when excluding studies with short intervention durations. This underscores the importance of interpreting the findings with caution and emphasizes the need for further studies. Future studies should aim to directly compare different intermittent fasting modalities, consider longer-term outcomes, and adhere to rigorous methodologies, including randomization and blinding, to enhance the reliability of results.
Conclusions
This network meta-analysis compared various intermittent fasting methods and found that mADF and TRE were associated with greater reductions in SBP and DBP compared to ADF, and TRE showed greater effects on FPG compared to PF and CER. PF was more effective than usual diets in lowering LDL cholesterol. Both mADF and ADF were more effective than usual diets in reducing body weight, while TRE was associated with reductions in waist circumference, DBP, FPG, and fat-free mass. Among the methods assessed, mADF showed relatively greater effects across several cardiovascular risk factors. These findings suggest that certain intermittent fasting approaches may hold promise as part of lifestyle strategies to improve cardiovascular risk profiles. However, the results should be interpreted with caution due to high risk of bias as per reviewer, and other limitations such as short intervention duration in many studies. Further high-quality, long-term randomized controlled trials are needed to establish the sustained efficacy and safety of different intermittent fasting methods.
Key References
-
D. Herz, S. Karl, J. Weiß, P. Zimmermann, S. Haupt, R. T. Zimmer, J. Schierbauer, N. B. Wachsmuth, K. Khoramipour, M. P. Erlmann, T. Niedrist, T. Voit, S. Rilstone, H. Sourij, and O. Moser. “Effects of different types of intermittent fasting interventions on metabolic health in healthy individuals (EDIF): A randomised trial with a controlled-run in phase”, Nutrients. 2024;16(8). https://doi.org/10.3390/nu16081114.
-
This randomised controlled trial investigated the effect of different intermittent fasting on body composition and metabolic and haematological markers in healthy participants. The data suggest that some fasting interventions might be promising for metabolic health. This reference is ‘of importance’.
-
Obermayer, N. J. Tripolt, P. N. Pferschy, H. Kojzar, F. Aziz, A. Muller, M. Schauer, (A) Oulhaj, F. Aberer, C. Sourij, H. Habisch, T. Madl, T. Pieber, (B) Obermayer-Pietsch, V. Stadlbauer, H. Sour. “Efficacy and Safety of Intermittent Fasting in People With Insulin-Treated Type 2 Diabetes (INTERFAST-2)-A Randomized Controlled Trial”, Diabetes Care 2023;46:463–468. https://doi.org/10.2337/dc22-1622.
-
This randomised controlled study elucidates the safety and effectiveness of intermittent fasting in type 2 diabetes. Findings show that intermittent fasting has the potential to become a promising therapy option in people with insulin-treated type 2 diabetes. This reference is of ‘outstanding importance’.
-
S. Lin, S. Cienfuegos, M. Ezpeleta, K. Gabel, V. Pavlou, A. Mulas, K. Chakos, M. McStay J. Wu, L. Tussing-Humphreys. “Time-Restricted Eating Without Calorie Counting for Weight Loss in a Racially Diverse Population”, Ann Intern Med. 2023; 176(7): 885–895. https://doi.org/10.7326/M23-0052.
-
This randomised controlled trial assessed whether time-restricted eating is more effective for weight control and cardiometabolic risk reduction than calorie restriction or control. Time-restricted eating is more effective in producing weight loss when compared with control but not more effective than calorie restriction in a racially diverse population. This reference is ‘of importance’.
Data Availability
No datasets were generated or analysed during the current study.
References
Yusuf S, Joseph P, Rangarajan S, et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. 2020;395(10226):795–808.
Kibret KT, Backholer K, Peeters A, Tesfay F, Nichols M. Burdens of non-communicable disease attributable to metabolic risk factors in australia, 1990–2019: joinpoint regression analysis of the global burden of disease study. BMJ Open. 2023;13(7):e071319.
Rippe JM. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am J Lifestyle Med. 2019;13(2):204–12.
Budreviciute A, Damiati S, Sabir DK, et al. Management and prevention strategies for Non-communicable diseases (NCDs) and their risk factors. Front Public Health. 2020;8:574111.
Napoleao A, Fernandes L, Miranda C, Marum AP. Effects of calorie restriction on health span and insulin resistance: classic calorie restriction diet vs. Ketosis-Inducing Diet Nutrients. 2021;13(4).
Katsarou AL, Katsilambros NL, Koliaki CC. Intermittent energy restriction, weight loss and cardiometabolic risk: A critical appraisal of evidence in humans. Healthc (Basel). 2021;9(5).
Sundfor TM, Svendsen M, Tonstad S. Intermittent calorie restriction-a more effective approach to weight loss? Am J Clin Nutr. 2018;108(5):909–10.
Dote-Montero M, Sanchez-Delgado G, Ravussin E. Effects of intermittent fasting on cardiometabolic health: an energy metabolism perspective. Nutrients. 2022;14(3).
Anton SD, Moehl K, Donahoo WT, et al. Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obes (Silver Spring). 2018;26(2):254–68.
Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev. 2015;73(10):661–74.
Yang F, Liu C, Liu X, et al. Effect of epidemic intermittent fasting on cardiometabolic risk factors: A systematic review and Meta-Analysis of randomized controlled trials. Front Nutr. 2021;8:669325.
Allaf M, Elghazaly H, Mohamed OG, et al. Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2021;1(1):CD013496.
Park J, Seo YG, Paek YJ, Song HJ, Park KH, Noh HM. Effect of alternate-day fasting on obesity and cardiometabolic risk: A systematic review and meta-analysis. Metabolism. 2020;111:154336.
Wang W, Wei R, Pan Q, Guo L. Beneficial effect of time-restricted eating on blood pressure: a systematic meta-analysis and meta-regression analysis. Nutr Metabolism. 2022;19(77).
Roman YM, Dominguez MC, Easow TM, Pasupuleti V, White CM, Hernandez AV. Effects of intermittent versus continuous dieting on weight and body composition in obese and overweight people: a systematic review and meta-analysis of randomized controlled trials. Int J Obes (Lond). 2019;43(10):2017–27.
Cioffi I, Evangelista A, Ponzo V, et al. Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. J Transl Med. 2018;16(1):371.
Fudla H, Mudjihartini N, Khusun H. Effect of intermittent fasting on fat mass and fat free mass among obese adult: A literature review. World Nutr J. 2021;4(2):57–64.
Meng H, Zhu L, Kord-Varkaneh H, H OS, Tinsley GM, Fu P. Effects of intermittent fasting and energy-restricted diets on lipid profile: A systematic review and meta-analysis. Nutrition. 2020;77:110801.
Dong TA, Sandesara PB, Dhindsa DS, et al. Intermittent fasting: A heart healthy dietary pattern?? Am J Med. 2020;133(8):901–7.
Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.
Higgins JP, Green S, editors. Cochrane handbook for systematic reviews of interventions, Version 5.1.0. Chichester (UK): John Wiley & Sons, Ltd.; 2011 [updated 2011 March]. Available at: http://handbookcochraneorg
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14(135).
Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.
Puhan MA, Schunemann HJ, Murad MH, et al. A GRADE working group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ. 2014;349:g5630.
Brignardello-Petersen R, Bonner A, Alexander PE, et al. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol. 2018;93:36–44.
Salanti G, Del Giovane C, Chaimani A, Caldwell DM, Higgins JP. Evaluating the quality of evidence from a network meta-analysis. PLoS ONE. 2014;9(7):e99682.
Van Valkenhoef G, Dias S, Ades AE, Welton NJ. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. Res Synth Methods. 2016;7(1):80–93.
Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64(2):163–71.
Mbuagbaw L, Rochwerg B, Jaeschke R et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Reviews. 2017;6(1).
Brignardello-Petersen R, Florez ID, Izcovich A, et al. GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework. BMJ. 2020;371:m3900.
Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS ONE. 2013;8(10):e76654.
White IR. Network meta-analysis. Stata J. 2015;15(4):951–85.
Akasheh RT, Kroeger CM, Trepanowski JF, et al. Weight loss efficacy of alternate day fasting versus daily calorie restriction in subjects with subclinical hypothyroidism: a secondary analysis. Appl Physiol Nutr Metab. 2020;45(3):340–3.
Arciero PJ, Poe M, Mohr AE, et al. Intermittent fasting and protein pacing are superior to caloric restriction for weight and visceral fat loss. Obesity. 2022;31(s1):139–49.
Beaulieu K, Casanova N, Oustric P, et al. Matched weight loss through intermittent or continuous energy restriction does not lead to compensatory increases in appetite and eating behavior in a randomized controlled trial in women with overweight and obesity. J Nutr. 2020;150(3):623–33.
Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Varady KA. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obes (Silver Spring Md). 2013;21(7):1370–9.
Byrne NM, Sainsbury A, King NA, Hills AP, Wood RE. Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study. International journal of obesity (2005). 2018;42(2):129-38.
Carter S, Clifton PM, Keogh JB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract. 2016;122:106–12.
Carter S, Clifton PM, Keogh JB. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial. Diabetes Res Clin Pract. 2019;151:11–9.
Castela I, Rodrigues C, Ismael S, et al. Intermittent energy restriction ameliorates adipose tissue-associated inflammation in adults with obesity: a randomised controlled trial. Clin Nutr. 2022;41(8):1660–6.
Catenacci VA, Pan Z, Ostendorf D, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obes (Silver Spring Md). 2016;24(9):1874–83.
Che T, Yan C, Tian D, Zhang X, Liu X, Wu Z. Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: a randomised controlled trial. Nutr Metabolism. 2021;18(1):88.
Cho AR, Moon JY, Kim S, et al. Effects of alternate day fasting and exercise on cholesterol metabolism in overweight or obese adults: a pilot randomized controlled trial. Metab Clin Exp. 2019;93:52–60.
Chow LS, Manoogian ENC, Alvear A, et al. Time-Restricted eating effects on body composition and metabolic measures in humans who are overweight: A feasibility study. Obes (Silver Spring). 2020;28(5):860–9.
Cienfuegos S, Gabel K, Kalam F et al. The effect of 4-h versus 6-h time restricted feeding on sleep quality, duration, insomnia severity and obstructive sleep apnea in adults with obesity. 2022;28(1):5–11.
Cienfuegos S, Gabel K, Kalam F, et al. Effects of 4- and 6-h Time-Restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metabol. 2020;32(3):366–e783.
Conley M, Le Fevre L, Haywood C, Proietto J. Is two days of intermittent energy restriction per week a feasible weight loss approach in obese males? A randomised pilot study. Nutr Dietetics. 2018;75(1):65–72.
Coutinho SR, Halset EH, Gåsbakk S, et al. Compensatory mechanisms activated with intermittent energy restriction: a randomized control trial. Clinical nutrition (Edinburgh. Scotland). 2018;37(3):815–23.
Domaszewski P, Konieczny M, Pakosz P, Baczkowicz D, Sadowska-Krepa E. Effect of a six-week intermittent fasting intervention program on the composition of the human body in women over 60 years of age. Int J Environ Res Public Health. 2020;17(11):1–9.
Domaszewski P, Konieczny M, Pakosz P, et al. Effect of a six-week times restricted eating intervention on the body composition in early elderly men with overweight. Sci Rep. 2022;12(1):9816.
Fagundes GBP, Tibaes JRB, Silva ML, et al. Metabolic and behavioral effects of time-restricted eating in women with overweight or obesity: preliminary findings from a randomized study. Nutr (Burbank Los Angeles Cty Calif). 2023;107(beu, 8802712):111909.
Gabel K, Kroeger CM, Trepanowski JF, et al. Differential effects of Alternate-Day fasting versus daily calorie restriction on insulin resistance. Obes (Silver Spring). 2019;27(9):1443–50.
Gray KL, Clifton PM, Keogh JB. The effect of intermittent energy restriction on weight loss and diabetes risk markers in women with a history of gestational diabetes: a 12-month randomized control trial. Am J Clin Nutr. 2021;114(2):794–803.
Guo Y, Luo S, Ye Y, Yin S, Fan J, Xia M. Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients. J Clin Endocrinol Metab. 2021;106(1):64–79.
Haganes KL, Silva CP, Eyjólfsdóttir SK et al. Time-restricted eating and exercise training improve HbA1c and body composition in women with overweight/obesity: A randomized controlled trial. Cell metabolism. 2022;34(10):1457-71.e4.
Harvie M, Wright C, Pegington M, et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr. 2013;110(8):1534–47.
Harvie MN, Pegington M, Mattson MP, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond). 2011;35(5):714–27.
He CJ, Fei YP, Zhu CY, et al. Effects of intermittent compared with continuous energy restriction on blood pressure control in overweight and obese patients with hypertension. Front Cardiovasc Med. 2021;8:750714.
He M, Wang J, Liang Q et al. Time-restricted eating with or without low-carbohydrate diet reduces visceral fat and improves metabolic syndrome: a randomized trial. 2022;3(10):100777.
Headland ML, Clifton PM, Keogh JB. Effect of intermittent compared to continuous energy restriction on weight loss and weight maintenance after 12 months in healthy overweight or obese adults. Int J Obes. 2019;43(10):2028–36.
Kunduraci YE, Ozbek H. Does the energy restriction intermittent fasting diet alleviate metabolic syndrome biomarkers?? A randomized controlled trial. Nutrients. 2020;12(10).
Lin S, Cienfuegos S, Ezpeleta M, et al. Time-Restricted eating without calorie counting for weight loss in a Racially diverse population. Ann Intern Med. 2023;176(7):885–95.
Lin YJ, Wang YT, Chan LC, Chu NF. Effect of time-restricted feeding on body composition and cardio-metabolic risk in middle-aged women in Taiwan., Nutrition. (Burbank, Los Angeles County, Calif). 2022;93.
Liu D, Huang Y, Huang C, et al. Calorie restriction with or without Time-Restricted eating in weight loss. N Engl J Med. 2022;386(16):1495–504.
Liu H, Chen S, Ji H, Dai Z. Effects of time-restricted feeding and walking exercise on the physical health of female college students with hidden obesity: a randomized trial. Front Public Health. 2023;11(101616579):1020887.
Lowe DA, Wu N, Rohdin-Bibby L, et al. Effects of Time-Restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern Med. 2020;180(11):1491–9.
Manoogian ENC, Zadourian A, Lo HC et al. Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-h shift workers: The Healthy Heroes randomized control trial. Cell metabolism. 2022;34(10):1442-56.e7.
Maroofi M, Nasrollahzadeh J. Effect of intermittent versus continuous calorie restriction on body weight and cardiometabolic risk markers in subjects with overweight or obesity and mild-to-moderate hypertriglyceridemia: a randomized trial. Lipids Health Dis. 2020;19(1):216.
Miranda ER, Fuller KNZ, Perkins RK et al. Endogenous secretory RAGE increases with improvements in body composition and is associated with markers of adipocyte health. 2018;28(11):1155–65.
Obermayer A, Tripolt NJ, Pferschy PN et al. Efficacy and safety of intermittent fasting in people with Insulin-Treated type 2 diabetes (INTERFAST-2)-A randomized controlled trial. 2023;46(2):463–8.
Oh M, Kim S, An K-Y, et al. Effects of alternate day calorie restriction and exercise on cardio-metabolic risk factors in overweight and obese adults: an exploratory randomized controlled study. BMC Public Health. 2018;18(1):1124.
Parvaresh A, Razavi R, Abbasi B, et al. Modified alternate-day fasting vs. calorie restriction in the treatment of patients with metabolic syndrome: a randomized clinical trial. Complement Ther Med. 2019;47:102187.
Pavlou V, Cienfuegos S, Lin S, et al. Effect of Time-Restricted eating on weight loss in adults with type 2 diabetes: A randomized clinical trial. JAMA Netw Open. 2023;6(10):e2339337.
Pinto AM, Bordoli C, Buckner LP, et al. Intermittent energy restriction is comparable to continuous energy restriction for cardiometabolic health in adults with central obesity: a randomized controlled trial; the Met-IER study. Clinical nutrition (Edinburgh. Scotland). 2020;39(6):1753–63.
Razavi R, Parvaresh A, Abbasi B et al. The alternate-day fasting diet is a more effective approach than a calorie restriction diet on weight loss and hs-CRP levels. 2021;91(3-4):242–50.
Schübel R, Nattenmüller J, Sookthai D, et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: a randomized controlled trial. Am J Clin Nutr. 2018;108(5):933–45.
Steger FL, Donnelly JE, Hull HR, Li X, Hu J, Sullivan DK. Intermittent and continuous energy restriction result in similar weight loss, weight loss maintenance, and body composition changes in a 6 month randomized pilot study. Clin Obes. 2021;11(2):e12430.
Stekovic S, Hofer SJ, Tripolt N, et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, Non-obese humans. Cell Metab. 2019;30(3):462–76. e6.
Sundfor TM, Svendsen M, Tonstad S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. 2018;(no pagination).
Suthutvoravut U, Anothaisintawee T, Boonmanunt S et al. Efficacy of Time-Restricted eating and behavioral economic intervention in reducing fasting plasma glucose, HbA1c, and cardiometabolic risk factors in patients with impaired fasting glucose: A randomized controlled trial. Nutrients. 2023;15(19).
Teong XT, Liu K, Vincent AD, et al. Intermittent fasting plus early time-restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: a randomized controlled trial. Nat Med. 2023;29(4):963–72.
Trepanowski JF, Kroeger CM, Barnosky A, et al. Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and Circulating adipokines: secondary analysis of a randomized controlled trial. Clin Nutr. 2018;37(6 Pt A):1871–8.
Varady KA, Bhutani S, Klempel MC, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12(1):146.
Herz D, Karl S, Weiß J et al. Effects of different types of intermittent fasting interventions on metabolic health in healthy individuals (EDIF): A randomised trial with a Controlled-Run in phase. Nutrients. 2024;16(8).
Hooshiar SH, Yazdani A, Jafarnejad S. Does an alternate-day modified fasting diet improve premenstrual syndrome symptoms and health-related quality of life in obese or overweight women with premenstrual syndrome? A randomized, controlled trial. Front Nutr. 2024;10:1298831.
Mena-Hernandez DR, Jimenez-Dominguez G, Mendez JD et al. Effect of early Time-Restricted eating on metabolic markers and body composition in individuals with overweight or obesity. Nutrients. 2024;16(14).
Quist JS, Pedersen HE, Jensen MM, et al. Effects of 3 months of 10-h per-day time-restricted eating and 3 months of follow-up on bodyweight and cardiometabolic health in Danish individuals at high risk of type 2 diabetes: the RESET single-centre, parallel, superiority, open-label, randomised controlled trial. Lancet Healthy Longev. 2024;5(5):e314–25.
Sukkriang N, Buranapin S. Effect of intermittent fasting 16:8 and 14:10 compared with control-group on weight reduction and metabolic outcomes in obesity with type 2 diabetes patients: A randomized controlled trial. J Diabetes Investig. 2024;15(9):1297–305.
Templeman-2021-A-randomized-controlled-trial-to-is.pdf
McCarthy D, Berg A. Weight loss strategies and the risk of skeletal muscle mass loss. Nutrients. 2021;13(7).
Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008;295(5):E1009–17.
Goodpaster BH, Sparks LM. Metabolic flexibility in health and disease. Cell Metab. 2017;25(5):1027–36.
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46–58.
Acknowledgements
The authors would like to thank the librarian (Olivia Larobina) for her help with developing the literature search strategy.
Funding
Open Access funding enabled and organized by CAUL and its Member Institutions. Open Access funding enabled and organized by CAUL and its Member Institutions. This research received no specific grant from any funding agency or the commercial or not-for-profit sectors. AP is supported by a National Health and Medical Research Council (NHMRC) Investigator Grant. MN is supported by an NHMRC Ideas Grant (GNT2002334). The contents of this publication are solely the responsibility of the authors and do not reflect the views of the NHMRC.
Author information
Authors and Affiliations
Contributions
KTK and MN: conceptualised and designed the study; KTK: analysed the data; KTK, MN, AP, TKT and YMM: drafted the manuscript; KTK, MN, AP, TKT and YMM: Critically reviewed and revised the manuscript; All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Kibret, K.T., Peeters, A., Tegegne, T.K. et al. Intermittent Fasting for the Prevention of Cardiovascular Disease Risks: Systematic Review and Network Meta-Analysis. Curr Nutr Rep 14, 93 (2025). https://doi.org/10.1007/s13668-025-00684-7
Accepted:
Published:
DOI: https://doi.org/10.1007/s13668-025-00684-7