Aichner, T., Grünfelder, M., Maurer, O., Jegeni, D.: Twenty-five years of social media: a review of social media applications and definitions from 1994 to 2019. Cyberpsychol. Behav. Soc. Netw. 24, 215–222 (2021). https://doi.org/10.1089/cyber.2020.0134
Article
Google Scholar
Global daily social media usage 2024. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/. Accessed 30 Mar 2024
Belle Wong, J.D.: Top social media statistics and trends of 2024. https://www.forbes.com/advisor/business/social-media-statistics/. Accessed 30 Mar 2024
Number of worldwide social network users 2027. https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/. Accessed 30 Mar 2024
Rodríguez-Ibánez, M., Casánez-Ventura, A., Castejón-Mateos, F., Cuenca-Jiménez, P.-M.: A review on sentiment analysis from social media platforms. Expert Syst. Appl. 223, 119862 (2023). https://doi.org/10.1016/j.eswa.2023.119862
Article
Google Scholar
Dhiman, D.B.: Ethical issues and challenges in social media: A current scenario. SSRN Electron. J. (2023). https://doi.org/10.2139/ssrn.4406610
Article
Google Scholar
Thakur, N., Han, C.: An exploratory study of tweets about the SARS-CoV-2 Omicron variant: insights from sentiment analysis, language interpretation, source tracking, type classification, and embedded URL detection. COVID. 2, 1026–1049 (2022). https://doi.org/10.3390/covid2080076
Article
Google Scholar
Thakur, N.: A large-scale dataset of Twitter chatter about online learning during the current COVID-19 Omicron wave. Data (Basel) 7, 109 (2022). https://doi.org/10.3390/data7080109
Ge, J., Gretzel, U.: Emoji rhetoric: a social media influencer perspective. J. Mark. Manag. 34, 1272–1295 (2018). https://doi.org/10.1080/0267257x.2018.1483960
Article
Google Scholar
World Emoji Day statistics —. https://worldemojiday.com/statistics. Accessed 30 Mar 2024
Smileys, People: Emoji statistics. https://emojipedia.org/stats. Accessed 30 Mar 2024
Tang, J., Chang, Y., Liu, H.: Mining social media with social theories: a survey. https://www.cse.msu.edu/~tangjili/publication/Tang-Chang-Liu.pdf. Accessed 30 Mar 2024
Agarwal, N., Yiliyasi, Y.: Information quality challenges in social media. In: MIT International Conference on Information Quality (2010)
Google Scholar
Social Data Mining for Crime Intelligence: Contributions to Social Data Quality Assessment and Prediction Methods. https://bradscholars.brad.ac.uk/handle/10454/16066. Accessed 30 Mar 2024
Date, D.#: P., Sg-, P.L.C., Reply-to:, S.-22, Jabot, C.: Correct UTF-8 handling during phase 1 of translation. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2295r0.pdf. Accessed 03 May 2024
Mohapatra, R.K., et al.: Transmission dynamics, complications and mitigation strategies of the current mpox outbreak: a comprehensive review with bibliometric study. Rev. Med. Virol. 34 (2024). https://doi.org/10.1002/rmv.2541
Cuetos-Suárez, D., Gan, R.K., Cuetos-Suárez, D., Arcos González, P., Castro-Delgado, R.: A review of mpox outbreak and public health response in Spain. Risk Manag. Healthc. Policy. 17, 297–310 (2024). https://doi.org/10.2147/rmhp.s440035
Article
Google Scholar
Masirika, L.M., et al.: Ongoing mpox outbreak in Kamituga, South Kivu province, associated with monkeypox virus of a novel Clade I sub-lineage, Democratic Republic of the Congo, 2024. Euro Surveill. 29 (2024). https://doi.org/10.2807/1560-7917.es.2024.29.11.2400106
Multi-country outbreak of mpox, External situation report#33, 31 May 2024. https://www.who.int/publications/m/item/multi-country-outbreak-of-mpox--external-situation-report-33--31-may-2024. Accessed 07 Jun 2024
Chouhan, A., Nanda, D., Jain, J., Pattni, K., Kurup, L.: Emotion prediction of comments in Twitch.Tv livestream environment. In: Fong, S., Dey, N., Joshi, A. (eds.) ICT Analysis and Applications. Lecture Notes in Networks and Systems, vol. 517. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-5224-1_40
https://ijadst.com/ajradmin/certificates/138/IJADST_20210438.pdf. Accessed 04 May 2024
https://www.researchgate.net/profile/Muhammad-Nusrat-2/publication/373649914_Emoji_Prediction_in_Tweets_using_BERT/links/64f5ea6348c07f3da3d86513/Emoji-Prediction-in-Tweets-using-BERT.pdf. Accessed 04 May 2024
Kone, V.S., Anagal, A.M., Anegundi, S., Jadekar, P., Patil, P.: Emoji prediction using bi-directional LSTM. ITM Web Conf. 53, 02004 (2023). https://doi.org/10.1051/itmconf/20235302004
Article
Google Scholar
Ranjan, R., Yadav, P.: Emoji prediction using LSTM and Naive Bayes. In: TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). IEEE (2021)
Google Scholar
Stoikos, S., Izbicki, M.: Multilingual emoticon prediction of tweets about COVID-19. In: Nissim, M., Patti, V., Plank, B., Durmus, E. (eds.) Proceedings of the Third Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media, pp. 109–118. Association for Computational Linguistics, Barcelona, Spain (Online) (2020)
Google Scholar
Inan, E.: An active learning based emoji prediction method in Turkish. Int. J. Intell. Syst. Appl. Eng. 8, 1–5 (2020). https://doi.org/10.18201/ijisae.2020158882
Kumar, S., Harichandana, B.S.S., Arora, H.: VoiceMoji: a novel on-device pipeline for seamless emoji insertion in dictation. In: 2021 IEEE 18th India Council International Conference (INDICON). IEEE (2021)
Google Scholar
Barbieri, F., Ronzano, F., Saggion, H.: What does this emoji mean? a vector space skip-gram model for twitter emojis (2016)
Google Scholar
Gupta, A., et al.: Context-aware emoji prediction using deep learning. In: Dev, A., Agrawal, S.S., Sharma, A. (eds.) Artificial Intelligence and Speech Technology. AIST 2021. Communications in Computer and Information Science, vol. 1546. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95711-7_22
Shobana, J., Amudha, S., Kumar, S.: Emoji anticipation and prediction using deep neural network model. In: 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). IEEE (2022)
Google Scholar
Barbieri, F., Ballesteros, M., Saggion, H.: Are emojis predictable? In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, vol. 2, Short Papers. Association for Computational Linguistics, Stroudsburg, PA, USA (2017)
Google Scholar
Zhao, S., et al.: PEDM: A multi-task learning model for persona-aware Emoji-embedded dialogue generation. ACM Trans. Multimed. Comput. Commun. Appl. 19, 1–21 (2023). https://doi.org/10.1145/3571819
Article
Google Scholar
Sv, P., Ittamalla, R.: What concerns the general public the most about monkeypox virus? – a text analytics study based on Natural Language Processing (NLP). Travel Med. Infect. Dis. 49, 102404 (2022). https://doi.org/10.1016/j.tmaid.2022.102404
Article
Google Scholar
Ng, Q.X., Yau, C.E., Lim, Y.L., Wong, L.K.T., Liew, T.M.: Public sentiment on the global outbreak of monkeypox: an unsupervised machine learning analysis of 352,182 twitter posts. Publ. Health 213, 1–4 (2022). https://doi.org/10.1016/j.puhe.2022.09.008
Article
Google Scholar
Cooper, L.N., et al.: Analyzing an emerging pandemic on Twitter: Monkeypox. Open Forum Infect. Dis. 10 (2023). https://doi.org/10.1093/ofid/ofad142
Iparraguirre-Villanueva, O., et al.: The public health contribution of sentiment analysis of Monkeypox tweets to detect polarities using the CNN-LSTM model. Vaccines (Basel) 11, 312 (2023). https://doi.org/10.3390/vaccines11020312
Dsouza, V.S., et al.: A sentiment and content analysis of tweets on monkeypox stigma among the LGBTQ+ community: a cue to risk communication plan. Dialogues Health. 2, 100095 (2023). https://doi.org/10.1016/j.dialog.2022.100095
Article
Google Scholar
Zuhanda, M.K., Syofra, A.H.S., Mathelinea, D., Gio, P.U., Anisa, Y.A., Novita, N.: Analysis of twitter user sentiment on the monkeypox virus issue using the NRC lexicon. Mantik 6, 3854–3860 (2023). https://doi.org/10.35335/mantik.v6i4.3502
Knudsen, B., Høeg, T.B., Prasad, V.: Analysis of tweets discussing the risk of Mpox among children and young people in school (May–October 2022): a retrospective observational study. BMJ Paediatr. Open. 8, e002236 (2024). https://doi.org/10.1136/bmjpo-2023-002236
Article
Google Scholar
Bengesi, S., Oladunni, T., Olusegun, R., Audu, H.: A machine learning-sentiment analysis on Monkeypox outbreak: an extensive dataset to show the polarity of public opinion from twitter tweets. IEEE Access. 11, 11811–11826 (2023). https://doi.org/10.1109/access.2023.3242290
Article
Google Scholar
Farahat, R.A., Yassin, M.A., Al-Tawfiq, J.A., Bejan, C.A., Abdelazeem, B.: Public perspectives of monkeypox in Twitter: A social media analysis using machine learning. New Microbes New Infect. 49–50, 101053 (2022). https://doi.org/10.1016/j.nmni.2022.101053
Article
Google Scholar
Chen, Y., Yuan, J., You, Q., Luo, J.: Twitter sentiment analysis via bi-sense emoji embedding and attention-based LSTM. In: Proceedings of the 26th ACM International Conference on Multimedia. ACM, New York (2018)
Google Scholar
Lou, Y., Zhang, Y., Li, F., Qian, T., Ji, D.: Emoji-based sentiment analysis using attention networks. ACM Trans. Asian Low-resour. Lang. Inf. Process. 19, 1–13 (2020). https://doi.org/10.1145/3389035
Thakur, N., Patel, K.A., Poon, A., Shah, R., Azizi, N., Han, C.: A comprehensive analysis and investigation of the public discourse on twitter about exoskeletons from 2017 to 2023. Future Int. 15, 346 (2023). https://doi.org/10.3390/fi15100346
Article
Google Scholar
Liu, C., et al.: Improving sentiment analysis accuracy with emoji embedding. J. Safety Sci. Resil. 2, 246–252 (2021). https://doi.org/10.1016/j.jnlssr.2021.10.003
Article
Google Scholar
Grover, V.: Exploiting emojis in sentiment analysis: a survey. J. Inst. Eng. (India): Series B 103(1), 259–272 (2021). https://doi.org/10.1007/s40031-021-00620-7
Article
Google Scholar
Thakur, N., Cui, S., Khanna, K., Knieling, V., Duggal, Y.N., Shao, M.: Investigation of the gender-specific discourse about online learning during COVID-19 on Twitter using sentiment analysis, subjectivity analysis, and toxicity analysis. Computers. 12, 221 (2023). https://doi.org/10.3390/computers12110221
Article
Google Scholar
Calisir, E., Brambilla, M.: The problem of data cleaning for knowledge extraction from social media. In: Pautasso, C., Sánchez-Figueroa, F., Systä, K., Murillo Rodríguez, J. (eds.) Current Trends in Web Engineering. ICWE 2018. Lecture Notes in Computer Science(), vol. 11153. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03056-8_10
Batrinca, B., Treleaven, P.C.: Social media analytics: a survey of techniques, tools and platforms. AI Soc. 30, 89–116 (2015). https://doi.org/10.1007/s00146-014-0549-4
Article
Google Scholar
http://www.jacet-hokkaido.org/JACET_RBET_pdf/2019/Sato_2019.pdf. Accessed 04 May 2024
Thakur, N.: MonkeyPox2022Tweets: A large-scale Twitter dataset on the 2022 Monkeypox outbreak, findings from analysis of Tweets, and open research questions. Infect. Dis. Rep. 14, 855–883 (2022). https://doi.org/10.3390/idr14060087
Article
Google Scholar
Malaeb, D., et al.: Knowledge, attitude and conspiracy beliefs of healthcare workers in Lebanon towards Monkeypox. Trop. Med. Infect. Dis. 8, 81 (2023). https://doi.org/10.3390/tropicalmed8020081
Article
Google Scholar
Mohbey, K.K., Meena, G., Kumar, S., Lokesh, K.: A CNN-LSTM-based hybrid deep learning approach for sentiment analysis on Monkeypox tweets. New Gener. Comput. 42, 89–107 (2024). https://doi.org/10.1007/s00354-023-00227-0
Article
Google Scholar
Subramani, N., Veerappampalayam Easwaramoorthy, S., Mohan, P., Subramanian, M., Sambath, V.: A gradient boosted decision tree-based influencer prediction in social network analysis. Big Data Cogn. Comput. 7, 6 (2023). https://doi.org/10.3390/bdcc7010006
Article
Google Scholar
Hassani, H., Komendantova, N., Rovenskaya, E., Yeganegi, M.R.: Social intelligence mining: unlocking insights from X. Mach. Learn. Knowl. Extr. 5, 1921–1936 (2023). https://doi.org/10.3390/make5040093
Article
Google Scholar
https://www.who.int/westernpacific/emergencies/mpox-outbreak. Accessed 04 May 2024
https://wonder.cdc.gov/nndss/static/2024/11/2024-11-table968.html. Accessed 04 May 2024
Encodings supported by Python 3.12. https://docs.python.org/3.12/library/codecs.html. Accessed 07 Jun 2024
Encodings supported by Python 2.5. https://docs.python.org/2.5/lib/standard-encodings.html. Accessed 07 Jun 2024
Encodings supported by Python 2.6, https://docs.python.org/2.6/library/codecs.html. Accessed 07 Jun 2024
Encodings supported by Python 2.7. https://docs.python.org/2.7/library/codecs.html. Accessed 07 Jun 2024
Encodings supported by Python 3.0. https://docs.python.org/3.0/library/codecs.html. Accessed 07 Jun 2024
Encodings supported by Python 3.1. https://docs.python.org/3.1/library/codecs.html. Accessed 07 Jun 2024
Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis. ACM, New York (2007)
Google Scholar
Jansen, B.J., Zhang, M., Sobel, K., Chowdury, A.: Twitter power: tweets as electronic word of mouth. J. Am. Soc. Inf. Sci. Technol. 60, 2169–2188 (2009). https://doi.org/10.1002/asi.21149
Article
Google Scholar
Python. https://www.python.org/. Accessed 07 Jun 2024