Arkonac, S.E., Brumby, D.P., Smith, T., Babu, H.V.R.: In-car distractions and automated driving: a preliminary simulator study. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings, AutomotiveUI ’19, pp. 346–351. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3349263.3351505
Bella, F.: Driving simulator for speed research on two-lane rural roads. Accid. Anal. Prev. 40(3), 1078–1087 (2008)
Article
Google Scholar
Bernhard, W., Espie, E.: Torcs - the open racing car simulator (2020). https://sourceforge.net/projects/torcs/
Best, A., Narang, S., Pasqualin, L., Barber, D., Manocha, D.: Autonovi-Sim: autonomous vehicle simulation platform with weather, sensing, and traffic control. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1161–11618 (2018). https://doi.org/10.1109/CVPRW.2018.00152
Cai, H., Lin, Y., Mourant, R.: Study on driver emotion in driver-vehicle-environment systems using multiple networked driving simulators. DSC North America - Iowa City - September North America - Iowa City, September 2007
Google Scholar
Cai, P., Lee, Y., Luo, Y., Hsu, D.: SUMMIT: a simulator for urban driving in massive mixed traffic. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4023–4029 (2020). https://doi.org/10.1109/ICRA40945.2020.9197228
Chao, Q., Jin, X., Huang, H.W., Foong, S., Yu, L.F., Yeung, S.K.: Force-based heterogeneous traffic simulation for autonomous vehicle testing. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8298–8304 (2019). https://doi.org/10.1109/ICRA.2019.8794430
Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: CARLA: an open urban driving simulator. CoRR abs/1711.03938 (2017). http://arxiv.org/abs/1711.03938
Duan, Y., Liu, J., Jin, W., Peng, X.: Characterizing differentially-private techniques in the era of internet-of-vehicles. Technical Report-Feb-03 at User-Centric Computing Group, University of Nottingham Ningbo China (2022)
Google Scholar
Zhao, H., Cui, A., Cullen, S.A., Paden, B., Laskey, M., Goldberg, K.: Fluids: a first-order local urban intersection driving simulator. In: CASE (2018)
Google Scholar
Hoffman, L., McDowd, J.M.: Simulator driving performance predicts accident reports five years later. Psychol. Aging 25(3), 741 (2010)
Article
Google Scholar
Hohmuth, J.: Nifty Gui the manual 1.3.2 (2012). https://usermanual.wiki/Document/niftyguithemanual132.1944570287/help
Hu, H., Zhu, Z., Gao, Z., Zheng, R.: Analysis on biosignal characteristics to evaluate road rage of younger drivers: a driving simulator study*. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 156–161 (2018). https://doi.org/10.1109/IVS.2018.8500444
Hu, Y., Li, T., Anderson, L., Ragan-Kelley, J., Durand, F.: Taichi: a language for high-performance computation on spatially sparse data structures. ACM Trans. Graph. 38(6), 201:1–201:16 (2019). https://doi.org/10.1145/3355089.3356506
Huang, Z., et al.: Face2Multi-modal: in-vehicle multi-modal predictors via facial expressions. In: Adjunct Proceedings of the 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2020, Virtual Event, Washington, DC, USA, 21–22 September 2020, pp. 30–33. ACM (2020). https://doi.org/10.1145/3409251.3411716
JBullet: Jbullet-java port of bullet physics library (2010). http://jbullet.advel.cz/
Jin, W., Duan, Y., Liu, J., Huang, S., Xiong, Z., Peng, X.: BROOK dataset: a playground for exploiting data-driven techniques in human-vehicle interactive designs. Technical Report-Feb-01 at User-Centric Computing Group, University of Nottingham Ningbo China (2022)
Google Scholar
Jin, W., Ming, X., Song, Z., Xiong, Z., Peng, X.: Towards emulating internet-of-vehicles on a single machine. In: AutomotiveUI ’21: 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Leeds, United Kingdom, 9–14 September 2021 - Adjunct Proceedings, pp. 112–114. ACM (2021). https://doi.org/10.1145/3473682.3480275
Kiashari, S.E.H., Nahvi, A., Bakhoda, H., Homayounfard, A., Tashakori, M.: Evaluation of driver drowsiness using respiration analysis by thermal imaging on a driving simulator. Multimed. Tools Appl. 79, 17793–17815 (2020). https://doi.org/10.1007/s11042-020-08696-x
Article
Google Scholar
Koohestani, A., Kebria, P., Khosravi, A., Nahavandi, S.: Drivers performance evaluation using physiological measurement in a driving simulator. In: 2018 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6 (2018). https://doi.org/10.1109/DICTA.2018.8615763
Koohestani, A., Kebria, P.M., Khosravi, A., Nahavandi, S.: Drivers awareness evaluation using physiological measurement in a driving simulator. In: 2019 IEEE International Conference on Industrial Technology (ICIT), pp. 859–864 (2019). https://doi.org/10.1109/ICIT.2019.8755188
Kusterer, R.: jMonkeyEngine 3.0 Beginner’s Guide. Packt Publishing Ltd., Birmingham (2013)
Google Scholar
Lima Azevedo, C., et al.: Simmobility short-term: an integrated microscopic mobility simulator. Transp. Res. Record: J. Transp. Res. Board 2622, 13–23 (2017). https://doi.org/10.3141/2622-02
Liu, J., et al.: HUT: enabling high-utility, batched queries under differential privacy protection for internet-of-vehicles. Technical Report-Feb-02 at User-Centric Computing Group, University of Nottingham Ningbo China (2022)
Google Scholar
López, P.Á., et al.: Microscopic traffic simulation using SUMO. In: Zhang, W., Bayen, A.M., Medina, J.J.S., Barth, M.J. (eds.) 21st International Conference on Intelligent Transportation Systems, ITSC 2018, Maui, HI, USA, 4–7 November 2018, pp. 2575–2582. IEEE (2018). https://doi.org/10.1109/ITSC.2018.8569938
LWJGL: LWJGL: Lightweight java game library (2010). https://www.lwjgl.org/
Math, R., Mahr, A., Moniri, M.M., Müller, C.: OpenDS: a new open-source driving simulator for research. In: Proceedings of the International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Adjunct Proceedings, pp. 7–8 (2012)
Google Scholar
Morra, L., Lamberti, F., Pratticó, F.G., Rosa, S.L., Montuschi, P.: Building trust in autonomous vehicles: role of virtual reality driving simulators in HMI design. IEEE Trans. Veh. Technol. 68(10), 9438–9450 (2019). https://doi.org/10.1109/TVT.2019.2933601
Article
Google Scholar
Müller, M., Casser, V., Lahoud, J., Smith, N., Ghanem, B.: Sim4CV: a photo-realistic simulator for computer vision applications. Int. J. Comput. Vis. 126(9), 902–919 (2018)
Google Scholar
Naumann, M., Poggenhans, F., Lauer, M., Stiller, C.: CoInCar-Sim: an open-source simulation framework for cooperatively interacting automobiles. In: IEEE Intelligent Vehicles Symposium, pp. 1–6 (2018). https://doi.org/10.1109/IVS.2018.8500405
Peng, X., Huang, Z., Sun, X.: Building BROOK: a multi-modal and facial video database for human-vehicle interaction research, pp. 1–9 (2020). https://arxiv.org/abs/2005.08637
Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. CoRR abs/1709.07322 (2017). http://arxiv.org/abs/1709.07322
Santara, A., et al.: Madras: Multi agent driving simulator. J. Artif. Intell. Res. 70, 1517–1555 (2021)
Article
Google Scholar
Song, Z., Wang, S., Kong, W., Peng, X., Sun, X.: First attempt to build realistic driving scenes using video-to-video synthesis in OpenDS framework. In: Adjunct Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2019, Utrecht, The Netherlands, 21–25 September 2019, pp. 387–391. ACM (2019). https://doi.org/10.1145/3349263.3351497
Song, Z., Duan, Y., Jin, W., Huang, S., Wang, S., Peng, X.: Omniverse-OpenDS: enabling agile developments for complex driving scenarios via reconfigurable abstractions. In: International Conference on Human-Computer Interaction (2022)
Google Scholar
Sun, X., et al.: Exploring personalised autonomous vehicles to influence user trust. Cogn. Comput. 12(6), 1170–1186 (2020)
Article
Google Scholar
Tucă, A., Croitorescu, V., Oprean, M., Brandemeir, T.: Driving simulators for human vehicle interaction design. In: Balkan Region Conference on Engineering and Business Education, vol. 1. Sciendo (2015)
Google Scholar
Wang, J., Xiong, Z., Duan, Y., Liu, J., Song, Z., Peng, X.: The importance distribution of drivers’ facial expressions varies over time! In: AutomotiveUI ’21: 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Leeds, United Kingdom, 9–14 September 2021 - Adjunct Proceedings, pp. 148–151. ACM (2021). https://doi.org/10.1145/3473682.3480283
Xiong, Z., et al.: Face2Statistics: user-friendly, low-cost and effective alternative to in-vehicle sensors/monitors for drivers. In: International Conference on Human-Computer Interaction (2022)
Google Scholar
Zhang, Yu., Jin, W., Xiong, Z., Li, Z., Liu, Y., Peng, X.: Demystifying interactions between driving behaviors and styles through self-clustering algorithms. In: Krömker, H. (ed.) HCII 2021. LNCS, vol. 12791, pp. 335–350. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78358-7_23
Chapter
Google Scholar