Skip to main content

Perception of Privacy and Willingness to Share Personal Data in the Smart Factory

  • Conference paper
  • First Online:
HCI for Cybersecurity, Privacy and Trust (HCII 2023)

Abstract

By optimising data-driven processes and improving automation, the digital transformation in production aims to increase effectiveness, efficiency and improve the working conditions of employees. In such a networked working environment, the performance and actions of workers need to be captured in form of digital data. However, the collection of personal data is a sensitive issue. More research, not only from a techno-centric but also from a human-centric perspective, is needed. Using a multi-method approach, this study examines the motives, barriers and acceptance of technologies that use personal data in a production context. A qualitative pre-study (\(n = 7\)) identified motives (e.g. data offering personal benefit) and barriers (e.g. privacy concerns) of personal data disclosure. In the subsequent quantitative main study (\(n = 152\)), these key elements were operationalised in a scenario-based online survey, and two different working scenarios – cobot and chatbot – were additionally assessed using the Technology Acceptance Model (TAM and UTAUT2). The results show: The more fun it is to use and the higher the expected performance, the higher the acceptance of technology using personal data. Trust in automation followed by expected effort were important. Views on the disclosure of personal data and the expected benefit to the organisation varied widely. Out of seven categories, work-related and demographic data were considered to be disclosable, while five categories were considered important to the organisation. The article concludes with actionable recommendations on how the collection and use of personal data can be well aligned with stakeholder interests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Acquisti, A., Brandimarte, L., Loewenstein, G.: Privacy and human behavior in the age of information. Science 347(6221), 509–514 (2015)

    Article  Google Scholar 

  2. Altman, I.: The environment and social behavior: privacy, personal space, territory, and crowding (1975)

    Google Scholar 

  3. Auer-Srnka, K.J., Meier-Pesti, K., Grießmair, M.: Ältere menschen als zielgruppe der werbung: Eine explorative studie zu wahrnehmung und selbstbild der “best ager” sowie stereotypen vorstellungen vom alt-sein in jüngeren altersgruppen. der markt 47(3), 100–117 (2008)

    Google Scholar 

  4. Bhave, D.P., Teo, L.H., Dalal, R.S.: Privacy at work: a review and a research agenda for a contested terrain. J. Manag. 46(1), 127–164 (2020)

    Google Scholar 

  5. Brauner, P., et al.: A computer science perspective on digital transformation in production. ACM Trans. Internet Things 3(2), 1–32 (2022). https://doi.org/10.1145/3502265

  6. Van den Broeck, E., Poels, K., Walrave, M.: Older and wiser? Facebook use, privacy concern, and privacy protection in the life stages of emerging, young, and middle adulthood. Soc. Media+ Soc. 1(2), 2056305115616149 (2015)

    Google Scholar 

  7. Buhalis, D., Cheng, E.S.Y.: Exploring the use of chatbots in hotels: technology providers’ perspective. In: Neidhardt, J., Wörndl, W. (eds.) Information and Communication Technologies in Tourism 2020, pp. 231–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36737-4_19

    Chapter  Google Scholar 

  8. Choudrie, J., Vyas, A.: Silver surfers adopting and using Facebook? A quantitative study of Hertfordshire, UK applied to organizational and social change. Technol. Forecast. Soc. Chang. 89, 293–305 (2014)

    Article  Google Scholar 

  9. Chung, M., Ko, E., Joung, H., Kim, S.J.: Chatbot e-service and customer satisfaction regarding luxury brands. J. Bus. Res. 117, 587–595 (2020)

    Article  Google Scholar 

  10. Dammers, H., Vervier, L., Mittelviefhaus, L., Brauner, P., Ziefle, M., Gries, T.: Usability of human-robot interaction within textile production: insights into the acceptance of different collaboration types (2022)

    Google Scholar 

  11. Davis, F.D.: User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. Int. J. Man Mach. Stud. 38(3), 475–487 (1993). https://doi.org/10.1006/imms.1993.1022

    Article  Google Scholar 

  12. Dethloff, C.: Akzeptanz und Nicht-Akzeptanz von technischen Produktinnovationen. Pabst Science Publ. (2004)

    Google Scholar 

  13. Dinev, T., Hart, P.: An extended privacy calculus model for e-commerce transactions. Inf. Syst. Res. 17(1), 61–80 (2006)

    Article  Google Scholar 

  14. Epley, N., Waytz, A., Cacioppo, J.T.: On seeing human: a three-factor theory of anthropomorphism. Psychol. Rev. 114(4), 864 (2007)

    Article  Google Scholar 

  15. European Commission: Industry 5.0 (2022). https://ec.europa.eu/info/research-and-innovation/research-area/industrial-research-and-innovation/industry-50_en. Accessed 12 Dec 2022

  16. Greco, A., Caputo, F., Caterino, M., D’Ambra, S., Fera, M., Laudante, E.: Composite parts assembly operational improvements. In: Macromolecular Symposia, vol. 389, p. 1900098. Wiley Online Library (2020)

    Google Scholar 

  17. Han, M.C.: The impact of anthropomorphism on consumers’ purchase decision in chatbot commerce. J. Internet Commer. 20(1), 46–65 (2021)

    Article  MathSciNet  Google Scholar 

  18. Hassenzahl, M., Burmester, M., Koller, F.: Attrakdiff: ein fragebogen zur messung wahrgenommener hedonischer und pragmatischer qualität. In: In: Szwillus, G., Ziegler, J. (eds.) Mensch & Computer 2003. Berichte des German Chapter of the ACM, vol. 57, pp. 187–196. Springer Vieweg+Teubner Verlag (2003). https://doi.org/10.1007/978-3-322-80058-9_19

  19. Ischen, C., Araujo, T., Voorveld, H., van Noort, G., Smit, E.: Privacy concerns in chatbot interactions. In: Følstad, A., et al. (eds.) CONVERSATIONS 2019. LNCS, vol. 11970, pp. 34–48. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39540-7_3

    Chapter  Google Scholar 

  20. Jacobs, J.V., et al.: Employee acceptance of wearable technology in the workplace. Appl. Ergon. 78, 148–156 (2019)

    Article  Google Scholar 

  21. Jandl, C., Zafari, S., Taurer, F., Hartner-Tiefenthaler, M., Schlund, S.: Location-based monitoring in production environments: does transparency help to increase the acceptance of monitoring? Prod. Manuf. Res. 11(1), 2160387 (2023)

    Google Scholar 

  22. Kagermann, H.: Change through digitization—value creation in the age of industry 4.0. In: Albach, H., Meffert, H., Pinkwart, A., Reichwald, R. (eds.) Management of Permanent Change, pp. 23–45. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-05014-6_2

    Chapter  Google Scholar 

  23. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

    Article  Google Scholar 

  24. Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. Factors 46(1), 50–80 (2004)

    Article  Google Scholar 

  25. Lidynia, C., Brauner, P., Ziefle, M.: A step in the right direction – understanding privacy concerns and perceived sensitivity of fitness trackers. In: Ahram, T., Falcão, C. (eds.) AHFE 2017. AISC, vol. 608, pp. 42–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60639-2_5

    Chapter  Google Scholar 

  26. Markos, E., Milne, G.R., Peltier, J.W.: Information sensitivity and willingness to provide continua: a comparative privacy study of the united states and Brazil. J. Public Policy Mark. 36(1), 79–96 (2017)

    Article  Google Scholar 

  27. Mertens, A., et al.: Human digital shadow: data-based modeling of users and usage in the internet of production. In: 2021 14th International Conference on Human System Interaction (HSI), pp. 1–8. IEEE (2021)

    Google Scholar 

  28. Mettler, T., Wulf, J.: Physiolytics at the workplace: affordances and constraints of wearables use from an employee’s perspective. Inf. Syst. J. 29(1), 245–273 (2019)

    Article  Google Scholar 

  29. Millward, P.: The’grey digital divide’: perception, exclusion and barriers of access to the internet for older people. First monday (2003)

    Google Scholar 

  30. Milne, G.R., Pettinico, G., Hajjat, F.M., Markos, E.: Information sensitivity typology: mapping the degree and type of risk consumers perceive in personal data sharing. J. Consum. Aff. 51(1), 133–161 (2017)

    Article  Google Scholar 

  31. Nissenbaum, H.: Privacy in context. In: Privacy in Context. Stanford University Press (2009)

    Google Scholar 

  32. Paliga, M.: Human-cobot interaction fluency and cobot operators’ job performance. the mediating role of work engagement: a survey. Robot. Auton. Syst. 155, 104191 (2022)

    Google Scholar 

  33. Pfeiffer, S., Lee, H., Held, M.: Doing industry 4.0-participatory design on the shop floor in the view of engineering employees. Cuadernos de Relaciones Laborales 37(1), 293–311 (2019)

    Google Scholar 

  34. Pütz, S., Rick, V., Mertens, A., Nitsch, V.: Using IoT devices for sensor-based monitoring of employees’ mental workload: Investigating managers’ expectations and concerns. Appl. Ergon. 102, 103739 (2022). https://doi.org/10.1016/j.apergo.2022.103739

  35. Salvatore, M., Stefano, R., et al.: Smart operators: how industry 4.0 is affecting the worker’s performance in manufacturing contexts. Procedia Comput. Sci. 180, 958–967 (2021)

    Google Scholar 

  36. Schall, M.C., Jr., Sesek, R.F., Cavuoto, L.A.: Barriers to the adoption of wearable sensors in the workplace: a survey of occupational safety and health professionals. Hum. Factors 60(3), 351–362 (2018)

    Article  Google Scholar 

  37. Schoeman, F.: Privacy: philosophical dimensions. Am. Philos. Q. 21(3), 199–213 (1984)

    Google Scholar 

  38. Schomakers, E.M., Biermann, H., Ziefle, M.: Users’ preferences for smart home automation-investigating aspects of privacy and trust. Telematics Inform. 64, 101689 (2021)

    Article  Google Scholar 

  39. Schomakers, E.M., Lidynia, C., Ziefle, M.: All of me? Users’ preferences for privacy-preserving data markets and the importance of anonymity. Electron. Mark. 30(3), 649–665 (2020)

    Article  Google Scholar 

  40. Stefana, E., Marciano, F., Rossi, D., Cocca, P., Tomasoni, G.: Wearable devices for ergonomics: a systematic literature review. Sensors 21(3), 777 (2021)

    Article  Google Scholar 

  41. Tolsdorf, J., Reinhardt, D., Iacono, L.L.: Employees’ privacy perceptions: exploring the dimensionality and antecedents of personal data sensitivity and willingness to disclose. Proc. Priv. Enhanc. Technol. 2022(2), 68–94 (2022)

    Google Scholar 

  42. Turner, C.J., Oyekan, J., Stergioulas, L., Griffin, D.: Utilizing industry 4.0 on the construction site: challenges and opportunities. IEEE Trans. Ind. Inform. 17(2), 746–756 (2020)

    Google Scholar 

  43. Venkatesh, V., Davis, F., Morris, M.G.: Dead or alive? The development, trajectory and future of technology adoption research. J. Assoc. Inf. Syst. 8(4), 267–286 (2007)

    Google Scholar 

  44. Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 157–178 (2012)

    Google Scholar 

  45. Vervier, L., Ziefle, M.: A meta-analytical view on the acceptance of mhealth apps. In: ICT4AWE, pp. 322–329 (2022)

    Google Scholar 

  46. Warren, S.D., Brandeis, L.D.: The right to privacy’. Harv. Law Rev. 4, 193 (1890)

    Google Scholar 

  47. Yao, X., Ma, N., Zhang, J., Wang, K., Yang, E., Faccio, M.: Enhancing wisdom manufacturing as industrial metaverse for industry and society 5.0. J. Intell. Manuf. 1–21 (2022)

    Google Scholar 

  48. Yavari, F., Pilevari, N.: Industry revolutions development from industry 1.0 to industry 5.0 in manufacturing. J. Ind. Strateg. Manag. 5(2), 44–63 (2020)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the participants for sharing their personal views. We would also like to thank Lena Herrmann and Tim Schmeckel for their valuable research assistance. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2023 Internet of Production - 390621612.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philipp Brauner or Martina Ziefle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vervier, L., Brauner, P., Ziefle, M. (2023). Perception of Privacy and Willingness to Share Personal Data in the Smart Factory. In: Moallem, A. (eds) HCI for Cybersecurity, Privacy and Trust. HCII 2023. Lecture Notes in Computer Science, vol 14045. Springer, Cham. https://doi.org/10.1007/978-3-031-35822-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35822-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35821-0

  • Online ISBN: 978-3-031-35822-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics