Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S., Varadarajan, K.R.: Diverse near neighbor problem. In: Symposium on Computational Geometry (SoCG), pp. 207–214. ACM (2013)
Google Scholar
Armon, A., Zwick, U.: Multicriteria global minimum cuts. Algorithmica 46(1), 15–26 (2006)
Article
MathSciNet
MATH
Google Scholar
Ausiello, G., Marchetti-Spaccamela, A., Crescenzi, P., Gambosi, G., Protasi, M., Kann, V.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999). https://doi.org/10.5555/554706
Book
MATH
Google Scholar
Baste, J., et al.: Diversity of solutions: an exploration through the lens of fixed-parameter tractability theory. Artif. Intell. 303, 103644 (2022)
Google Scholar
Baste, J., Jaffke, L., Masařík, T., Philip, G., Rote, G.: FPT algorithms for diverse collections of hitting sets. Algorithms 12(12), 254 (2019)
Article
MathSciNet
Google Scholar
Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and budgeted matroid intersection via the gasoline puzzle. Math. Program. 128(1–2), 355–372 (2011)
Article
MathSciNet
MATH
Google Scholar
Birnbaum, B.E., Goldman, K.J.: An improved analysis for a greedy remote-clique algorithm using factor-revealing LPs. Algorithmica 55(1), 42–59 (2009)
Article
MathSciNet
MATH
Google Scholar
Borodin, A., Jain, A., Lee, H.C., Ye, Y.: Max-sum diversification, monotone submodular functions, and dynamic updates. ACM Trans. Algorithms 13(3), 41:1–41:25 (2017)
Google Scholar
Camerini, P.M., Galbiati, G., Maffioli, F.: Random pseudo-polynomial algorithms for exact matroid problems. J. Algorithms 13(2), 258–273 (1992)
Article
MathSciNet
MATH
Google Scholar
Cevallos, A., Eisenbrand, F., Zenklusen, R.: Max-sum diversity via convex programming. In: Fekete, S.P., Lubiw, A. (eds.) 32nd International Symposium on Computational Geometry, SoCG 2016, 14–18 June 2016, Boston, MA, USA. LIPIcs, vol. 51, pp. 26:1–26:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
Google Scholar
Cevallos, A., Eisenbrand, F., Zenklusen, R.: Local search for max-sum diversification. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 130–142. SIAM (2017)
Google Scholar
Clausen, J., Hansen, L.A.: Finding k edge-disjoint spanning trees of minimum total weight in a network: an application of matroid theory. In: Rayward-Smith, V.J. (ed.) Combinatorial Optimization II. Mathematical Programming Studies, vol. 13, pp. 88–101. Springer, Heidelberg (1980). https://doi.org/10.1007/BFb0120910
Chapter
Google Scholar
Commander, C.W., Pardalos, P.M., Ryabchenko, V., Uryasev, S., Zrazhevsky, G.: The wireless network jamming problem. J. Comb. Optim. 14(4), 481–498 (2007)
Article
MathSciNet
MATH
Google Scholar
Diakonikolas, I., Yannakakis, M.: Small approximate pareto sets for biobjective shortest paths and other problems. SIAM J. Comput. 39(4), 1340–1371 (2010)
Article
MathSciNet
MATH
Google Scholar
Erkut, E.: The discrete P-dispersion problem. Eur. J. Oper. Res. 46(1), 48–60 (1990). https://doi.org/10.1016/0377-2217(90)90297-O, https://www.sciencedirect.com/science/article/pii/037722179090297O
Fomin, F.V., Golovach, P.A., Jaffke, L., Philip, G., Sagunov, D.: Diverse pairs of matchings. In: 31st International Symposium on Algorithms and Computation (ISAAC). LIPIcs, vol. 181, pp. 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
Google Scholar
Fomin, F.V., Golovach, P.A., Panolan, F., Philip, G., Saurabh, S.: Diverse collections in matroids and graphs. In: Bläser, M., Monmege, B. (eds.) 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, 16–19 March 2021, Saarbrücken, Germany (Virtual Conference). LIPIcs, vol. 187, pp. 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
Google Scholar
Gabow, H.N.: Two algorithms for generating weighted spanning trees in order. SIAM J. Comput. 6(1), 139–150 (1977)
Article
MathSciNet
MATH
Google Scholar
Gao, J., Goswami, M., Karthik, C.S., Tsai, M.T., Tsai, S.Y., Yang, H.T.: Obtaining approximately optimal and diverse solutions via dispersion (2022). https://doi.org/10.48550/ARXIV.2202.10028, https://arxiv.org/abs/2202.10028
Goldenberg, E., Karthik C. S.: Hardness amplification of optimization problems. In: Vidick, T. (ed.) 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, 12–14 January 2020, Seattle, Washington, USA. LIPIcs, vol. 151, pp. 1:1–1:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.1
Hanaka, T., Kiyomi, M., Kobayashi, Y., Kobayashi, Y., Kurita, K., Otachi, Y.: A framework to design approximation algorithms for finding diverse solutions in combinatorial problems. CoRR abs/2201.08940 (2022)
Google Scholar
Hanaka, T., Kobayashi, Y., Kurita, K., Lee, S.W., Otachi, Y.: Computing diverse shortest paths efficiently: a theoretical and experimental study. CoRR abs/2112.05403 (2021)
Google Scholar
Hanaka, T., Kobayashi, Y., Kurita, K., Otachi, Y.: Finding diverse trees, paths, and more. In: Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI), pp. 3778–3786. AAAI Press (2021)
Google Scholar
Hara, S., Maehara, T.: Enumerate lasso solutions for feature selection. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), pp. 1985–1991. AAAI Press (2017)
Google Scholar
Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)
Article
MathSciNet
MATH
Google Scholar
Herzel, A., Bazgan, C., Ruzika, S., Thielen, C., Vanderpooten, D.: One-exact approximate pareto sets. J. Global Optim. 80(1), 87–115 (2021)
Article
MathSciNet
MATH
Google Scholar
Herzel, A., Ruzika, S., Thielen, C.: Approximation methods for multiobjective optimization problems: a survey. INFORMS J. Comput. 33(4), 1284–1299 (2021)
MathSciNet
MATH
Google Scholar
Krarup, J.: The peripatetic salesman and some related unsolved problems. In: Roy, B. (ed.) Combinatorial Programming: Methods and Applications. NATO Advanced Study Institutes Series, vol. 19, pp. 173–178. Springer, Dordrecht (1995). https://doi.org/10.1007/978-94-011-7557-9_8
Chapter
Google Scholar
Kuby, M.: Programming models for facility dispersion: the P-dispersion and maxisum dispersion problems. Geogr. Anal. 19(4), 315–329 (1987). https://doi.org/10.1111/j.1538-4632.1987.tb00133.x
Article
Google Scholar
Lawler, E.L.: A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem. Manage. Sci. 18(7), 401–405 (1972)
Article
MathSciNet
MATH
Google Scholar
Lindgren, E.M., Dimakis, A.G., Klivans, A.: Exact map inference by avoiding fractional vertices. In: International Conference on Machine Learning, pp. 2120–2129. PMLR (2017)
Google Scholar
Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Comb. 7(1), 105–113 (1987)
MathSciNet
MATH
Google Scholar
Murty, K.G.: An algorithm for ranking all the assignments in order of increasing cost. Oper. Res. 16(3), 682–687 (1968)
Article
MATH
Google Scholar
Namorado Climaco, J.C., Queirós Vieira Martins, E.: A bicriterion shortest path algorithm. Eur. J. Oper. Res. 11(4), 399–404 (1982)
Google Scholar
Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 86–92. IEEE (2000)
Google Scholar
Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61422-2_121
Chapter
Google Scholar
Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Heuristic and special case algorithms for dispersion problems. Oper. Res. 42(2), 299–310 (1994)
Article
MATH
Google Scholar
Wang, D., Kuo, Y.S.: A study on two geometric location problems. Inf. Process. Lett. 28(6), 281–286 (1988) https://doi.org/10.1016/0020-0190(88)90174-3, https://www.sciencedirect.com/science/article/pii/0020019088901743
Yang, H.T., Tsai, S.Y., Liu, K.S., Lin, S., Gao, J.: Patrol scheduling against adversaries with varying attack durations. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1179–1188 (2019)
Google Scholar