World Health Organization (2017) Global Tuberculosis Report WHO/HTM/TB/2017.23
Google Scholar
Golub JE, Pronyk P, Mohapi L, Thsabangu N, Moshabela M, Struthers H et al (2009) Isoniazid preventive therapy, HAART and tuberculosis risk in HIV-infected adults in South Africa: a prospective cohort. AIDS 23(5):631–6. https://doi.org/10.1097/QAD.0b013e328327964f
Briggs MA, Emerson C, Modi S, Taylor NK, Date A (2015) Use of isoniazid preventive therapy for tuberculosis prophylaxis among people living with HIV/AIDS: a review of the literature. J Acquir Immune Defic Syndr 68(Suppl 3):297
Article
CAS
Google Scholar
Ayele HT, Mourik MS, Debray TP, Bonten MJ (2015) Isoniazid prophylactic therapy for the prevention of tuberculosis in HIV infected adults: a systematic review and meta-analysis of randomized trials. PLoS One 10(11):e0142290
Article
PubMed
PubMed Central
CAS
Google Scholar
Nettles RE, Mazo D, Alwood K, Gachuhi R, Maltas G, Wendel K et al (2004) Risk factors for relapse and acquired rifamycin resistance after directly observed tuberculosis treatment: a comparison by HIV serostatus and rifamycin use. Clin Infect Dis 38(5):731–736
Article
PubMed
Google Scholar
Li J, Munsiff SS, Driver CR, Sackoff J (2005) Relapse and acquired rifampin resistance in HIV-infected patients with tuberculosis treated with rifampin- or rifabutin-based regimens in New York City, 1997–2000. Clin Infect Dis 41(1):83–91
Article
CAS
PubMed
Google Scholar
Burman W, Benator D, Vernon A, Khan A, Jones B, Silva C et al (2006) Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. Am J Respir Crit Care Med 173(3):350–356
Article
CAS
PubMed
Google Scholar
Vernon A, Burman W, Benator D, Khan A, Bozeman L (1999) Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Tuberculosis Trials Consortium. Lancet 353(9167):1843–1847
Article
CAS
PubMed
Google Scholar
Chirehwa MT, Rustomjee R, Mthiyane T, Onyebujoh P, Smith P, McIlleron H et al (2015) Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother 60(1):487–494
Article
PubMed
PubMed Central
CAS
Google Scholar
McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Connolly C et al (2012) Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother 56(6):3232–3238
Article
CAS
PubMed
PubMed Central
Google Scholar
Merle CS, Floyd S, Ndiaye A, Galperine T, Furco A, De Jong BC, et al. (2016) High-dose rifampicin tuberculosis treatment regimen to reduce 12-month mortality of TB/HIV co-infected patients: the RAFA trial results. AIDS 2016 Durban South Africa
Google Scholar
McIlleron H, Meintjes G, Burman WJ, Maartens G (2007) Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis 196(Suppl 1):63
Article
Google Scholar
Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray A et al (2010) Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med 362(8):697–706
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray AL et al (2011) Integration of antiretroviral therapy with tuberculosis. N Engl J Med 365:1492–1501
Article
CAS
PubMed
PubMed Central
Google Scholar
Havlir DV, Kendall MA, Ive P, Kumwenda J, Swindells S, Qasba SS et al (2011) Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med 365:1482–1491
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanc F, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E et al (2011) Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med 365:1471–1481
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta A, Mathad JS, Abdel-Rahman SM, Albano JD, Botgros R, Brown V et al (2016) Toward earlier inclusion of pregnant and postpartum women in tuberculosis drug trials: Consensus Statements from an International Expert Panel. Clin Infect Dis 62(6):761–769
Article
PubMed
Google Scholar
Nachman S, Ahmed A, Amanullah F, Becerra MC, Botgros R, Brigden G et al (2015) Towards early inclusion of children in tuberculosis drugs trials: a consensus statement. Lancet Infect Dis 15(6):711–720
Article
PubMed
PubMed Central
Google Scholar
Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S (2005) How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191(2):150–158
Article
PubMed
Google Scholar
Selwyn PA, Hartel D, Lewis VA, Schoenbaum EE, Vermund SH, Klein RS et al (1989) A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med 320(9):545–550
Article
CAS
PubMed
Google Scholar
Wood R, Maartens G, Lombard CJ (2000) Risk factors for developing tuberculosis in HIV-1-infected adults from communities with a low or very high incidence of tuberculosis. J Acquir Immune Defic Syndr 23(1):75–80
Article
CAS
PubMed
Google Scholar
Badje A, Moh R, Gabillard D, Guehi C, Kabran M, Ntakpe JB et al (2017) Effect of isoniazid preventive therapy on risk of death in west African, HIV-infected adults with high CD4 cell counts: long-term follow-up of the Temprano ANRS 12136 trial. Lancet Glob Health 5(11):e1089
Article
Google Scholar
Akolo C, Adetifa I, Shepperd S, Volmink J (2010) Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev (1):CD000171
Google Scholar
Chaisson RE, Golub JE (2017) Preventing tuberculosis in people with HIV-no more excuses. Lancet Glob Health 5(11):e1049
Article
Google Scholar
World Health Organization (2015) Guidelines on the managmeent of latent tuberculosis infection. WHO/HTM/TB/2015.01
Google Scholar
Samandari T, Agizew TB, Nyirenda S, Tedla Z, Sibanda T, Shang N et al (2011) 6-month versus 36-month isoniazid preventive treatment for tuberculosis in adults with HIV infection in Botswana: a randomised, double-blind, placebo-controlled trial. Lancet 377(9777):1588–1598
Article
CAS
PubMed
Google Scholar
Sterling TR, Scott NA, Miro JM, Calvet G, La Rosa A, Infante R et al (2016) Three months of weekly rifapentine and isoniazid for treatment of Mycobacterium tuberculosis infection in HIV-coinfected persons. AIDS 30(10):1607–1615
Article
CAS
PubMed
Google Scholar
Mueller Y, Mpala Q, Kerschberger B, Rusch B, Mchunu G, Mazibuko S et al (2017) Adherence, tolerability, and outcome after 36 months of isoniazid-preventive therapy in 2 rural clinics of Swaziland: a prospective observational feasibility study. Medicine (Baltimore) 96(35):e7740
Article
Google Scholar
Luetkemeyer AF, Rosenkranz SL, Lu D, Grinsztejn B, Sanchez J, Ssemmanda M et al (2015) Combined effect of CYP2B6 and NAT2 genotype on plasma efavirenz exposure during rifampin-based antituberculosis therapy in the STRIDE study. Clin Infect Dis 60(12):1860–1863
Article
PubMed
PubMed Central
Google Scholar
Dooley KE, Denti P, Martinson N, Cohn S, Mashabela F, Hoffmann J et al (2015) Pharmacokinetics of efavirenz and treatment of HIV-1 among pregnant women with and without tuberculosis coinfection. J Infect Dis 211(2):197–205
Article
CAS
PubMed
Google Scholar
Leger P, Chirwa S, Turner M, Richardson DM, Baker P, Leonard M et al (2016) Pharmacogenetics of efavirenz discontinuation for reported central nervous system symptoms appears to differ by race. Pharmacogenet Genomics 26(10):473–480
Article
CAS
PubMed
PubMed Central
Google Scholar
Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E et al (2011) Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med 365(23):2155–2166
Article
CAS
PubMed
Google Scholar
Sanofi (2015) An open-label, non-randomized, single sequence, two periods, four-treatment, three parallel groups pharmacokinetic interaction study of repeated oral doses (daily or weekly regimen) of rifapentine on ATRIPLA™ (fixed dose combination of efavirenz, emtricitabine, and tenofovir disoproxil fumarate) given to HIV+ patients
Google Scholar
Podany AT, Bao Y, Swindells S, Chaisson RE, Andersen JW, Mwelase T et al (2015) Efavirenz pharmacokinetics and pharmacodynamics in HIV-infected persons receiving Rifapentine and isoniazid for tuberculosis prevention. Clin Infect Dis. 61(8):1322–1327
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiner M, Egelund EF, Engle M, Kiser M, Prihoda TJ, Gelfond JA et al (2014) Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother 69(4):1079–1085
Article
CAS
PubMed
Google Scholar
Brooks KM, Pau AK, George JM, Alfaro R, Kellogg A, McLaughlin M et al (2016) Early termination of a PK study between dolutegravir and weekly isoniazid/rifapentine. CROI
Google Scholar
Dickinson JM, Mitchison DA (1981) Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am Rev Respir Dis 123(4 Pt 1):367–371
CAS
PubMed
Google Scholar
Jindani A, Nunn AJ, Enarson DA (2004) Two 8-month regimens of chemotherapy for treatment of newly diagnosed pulmonary tuberculosis: international multicentre randomised trial. Lancet 364(9441):1244–1251
Article
CAS
PubMed
Google Scholar
Okwera A, Whalen C, Byekwaso F, Vjecha M, Johnson J, Huebner R et al (1994) Randomised trial of thiacetazone and rifampicin-containing regimens for pulmonary tuberculosis in HIV-infected Ugandans. The Makerere University-Case Western University Research Collaboration. Lancet 344(8933):1323–1328
Article
CAS
PubMed
Google Scholar
Dooley KE, Flexner C, Andrade AS (2008) Drug interactions involving combination antiretroviral therapy and other anti-infective agents: repercussions for resource-limited countries. J Infect Dis 198(7):948–961
Article
CAS
PubMed
Google Scholar
Burger DM, Meenhorst PL, Koks CH, Beijnen JH (1993) Pharmacokinetic interaction between rifampin and zidovudine. Antimicrob Agents Chemother 37(7):1426–1431
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallicano KD, Sahai J, Shukla VK, Seguin I, Pakuts A, Kwok D et al (1999) Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol. 48(2):168–179
Article
CAS
PubMed
PubMed Central
Google Scholar
Droste JA, Verweij-van Wissen CP, Kearney BP, Buffels R, Vanhorssen PJ, Hekster YA et al (2005) Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. Antimicrob Agents Chemother 49(2):680–684
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills A, Arribas JR, Andrade-Villanueva J, DiPerri G, Van Lunzen J, Koenig E et al (2016) Switching from tenofovir disoproxil fumarate to tenofovir alafenamide in antiretroviral regimens for virologically suppressed adults with HIV-1 infection: a randomised, active-controlled, multicentre, open-label, phase 3, non-inferiority study. Lancet Infect Dis 16(1):43–52
Article
CAS
PubMed
Google Scholar
Maartens G, Boffito M, Flexner CW (2017) Compatibility of next-generation first-line antiretrovirals with rifampicin-based antituberculosis therapy in resource limited settings. Curr Opin HIV AIDS 12(4):355–358
Article
CAS
PubMed
Google Scholar
Custodio JM, West SK, Lutz J, Vu A, Xiao D, Collins S, et al. Twice daily administration of Tenofovir Alafenamide In combination with Rifampin: potential for Tenofovir Alafenamide use in HIV-TB coinfection. 2017
Google Scholar
Lopez-Cortes LF, Ruiz-Valderas R, Viciana P, Alarcon-Gonzalez A, Gomez-Mateos J, Leon-Jimenez E et al (2002) Pharmacokinetic interactions between Efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet 41(9):681–690
Article
CAS
PubMed
Google Scholar
Manosuthi W, Sungkanuparph S, Thakkinstian A, Vibhagool A, Kiertiburanakul S, Rattanasiri S et al (2005) Efavirenz levels and 24-week efficacy in HIV-infected patients with tuberculosis receiving highly active antiretroviral therapy and rifampicin. AIDS 19(14):1481–1486
Article
CAS
PubMed
Google Scholar
Friedland G, Khoo S, Jack C, Lalloo U (2006) Administration of Efavirenz (600 mg/day) with rifampicin results in highly variable levels but excellent clinical outcomes in patients treated for tuberculosis and HIV. J Antimicrob Chemother 58(6):1299–1302
Article
CAS
PubMed
Google Scholar
Pedral-Sampaio DB, Alves CR, Netto EM, Brites C, Oliveira AS, Badaro R (2004) Efficacy and safety of Efavirenz in HIV patients on Rifampin for tuberculosis. Braz J Infect Dis 8(3):211–216
Article
CAS
PubMed
Google Scholar
Patel A, Patel K, Patel J, Shah N, Patel B, Rani S (2004) Safety and antiretroviral effectiveness of concomitant use of rifampicin and efavirenz for antiretroviral-naive patients in India who are coinfected with tuberculosis and HIV-1. J Acquir Immune Defic Syndr 37(1):1166–1169
Article
CAS
PubMed
Google Scholar
Bertrand J, Verstuyft C, Chou M, Borand L, Chea P, Nay KH et al (2014) Dependence of Efavirenz- and rifampicin-isoniazid-based antituberculosis treatment drug-drug interaction on CYP2B6 and NAT2 genetic polymorphisms: ANRS 12154 Study in Cambodia. J Infect Dis 209(3):399–408
Article
CAS
PubMed
Google Scholar
HM MI, Schomaker M, Ren Y, Sinxadi P, Nuttall JJ, Gous H et al (2013) Effects of rifampin-based antituberculosis therapy on plasma efavirenz concentrations in children vary by CYP2B6 genotype. AIDS 27(12):1933–1940
Article
CAS
Google Scholar
Crawford KW, Ripin DH, Levin AD, Campbell JR, Flexner C (2012 July 01) Participants of conference on antiretroviral drug optimization. Optimising the manufacture, formulation, and dose of antiretroviral drugs for more cost-efficient delivery in resource-limited settings: a consensus statement. Lancet Infect Dis 12(7):550–560
Article
PubMed
Google Scholar
ENCORE1 Study Group, Carey D, Puls R, Amin J, Losso M, Phanupak P et al (2015) Efficacy and safety of efavirenz 400 mg daily versus 600 mg daily: 96-week data from the randomised, double-blind, placebo-controlled, non-inferiority ENCORE1 study. Lancet Infect Dis. 15(7):793–802
Article
CAS
Google Scholar
Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T (2001) Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 15(1):71–75
Article
CAS
PubMed
Google Scholar
Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A et al (2016) Comprehensive pharmacokinetic, pharmacodynamic and pharmacogenetic evaluation of once-daily Efavirenz 400 and 600 mg in treatment-naive HIV-infected patients at 96 weeks: results of the ENCORE1 Study. Clin Pharmacokinet 55(7):861–873
Article
CAS
PubMed
Google Scholar
Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A et al (2015) Pharmacokinetic and pharmacodynamic comparison of once-daily efavirenz (400 mg vs. 600 mg) in treatment-naive HIV-infected patients: results of the ENCORE1 Study. Clin Pharmacol Ther 98(4):406–416
Article
CAS
PubMed
PubMed Central
Google Scholar
Autar RS, Wit FW, Sankote J, Mahanontharit A, Anekthananon T, Mootsikapun P et al (2005) Nevirapine plasma concentrations and concomitant use of rifampin in patients coinfected with HIV-1 and tuberculosis. Antivir Ther 10(8):937–943
CAS
PubMed
Google Scholar
Ribera E, Pou L, Lopez RM, Crespo M, Falco V, Ocana I et al (2001) Pharmacokinetic interaction between nevirapine and rifampicin in HIV-infected patients with tuberculosis. J Acquir Immune Defic Syndr 28(5):450–453
Article
CAS
PubMed
Google Scholar
Nafrialdi NAW (2012) Yunihastuti E, Wiria MS. Influence of rifampicin on nevirapine plasma concentration in HIV-TB coinfected patients. Acta Med Indones 44(2):135–139
CAS
PubMed
Google Scholar
Swaminathan S, Padmapriyadarsini C, Venkatesan P, Narendran G, Ramesh Kumar S, Iliayas S et al (2011) Efficacy and safety of once-daily nevirapine- or efavirenz-based antiretroviral therapy in HIV-associated tuberculosis: a randomized clinical trial. Clin Infect Dis 53(7):716–724
Article
CAS
PubMed
Google Scholar
Bhatt NB, Baudin E, Meggi B, da Silva C, Barrail-Tran A, Furlan V et al (2015 Jan) Nevirapine or efavirenz for tuberculosis and HIV coinfected patients: exposure and virological failure relationship. J Antimicrob Chemother 70(1):225–232
Article
CAS
PubMed
Google Scholar
Shipton LK, Wester CW, Stock S, Ndwapi N, Gaolathe T, Thior I et al (2009) Safety and efficacy of nevirapine- and efavirenz-based antiretroviral treatment in adults treated for TB-HIV co-infection in Botswana. Int J Tuberc Lung Dis 13(3):360–366
CAS
PubMed
Google Scholar
Bonnet M, Bhatt N, Baudin E, Silva C, Michon C, Taburet AM et al (2013) Nevirapine versus efavirenz for patients co-infected with HIV and tuberculosis: a randomised non-inferiority trial. Lancet Infect Dis 13(4):303–312
Article
CAS
PubMed
Google Scholar
Boulle A, Van Cutsem G, Cohen K, Hilderbrand K, Mathee S, Abrahams M et al (2008) Outcomes of nevirapine- and efavirenz-based antiretroviral therapy when coadministered with rifampicin-based antitubercular therapy. JAMA 300(5):530–539
Article
CAS
PubMed
Google Scholar
Ramachandran G, Hemanthkumar AK, Rajasekaran S, Padmapriyadarsini C, Narendran G, Sukumar B et al (2006) Increasing nevirapine dose can overcome reduced bioavailability due to rifampicin coadministration. J Acquir Immune Defic Syndr 42(1):36–41
Article
CAS
PubMed
Google Scholar
Edurant package insert (2011) Tibotec Therapeutics
Google Scholar
Kakuda TN, Scholler-Gyure M, Hoetelmans RM (2011) Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet 50(1):25–39
Article
CAS
PubMed
Google Scholar
Wenning LA, Hanley WD, Brainard DM, Petry AS, Ghosh K, Jin B et al (2009) Effect of rifampin, a potent inducer of drug-metabolizing enzymes, on the pharmacokinetics of raltegravir. Antimicrob Agents Chemother 53(7):2852–2856
Article
CAS
PubMed
PubMed Central
Google Scholar
Taburet AM, Sauvageon H, Grinsztejn B, Assuied A, Veloso V, Pilotto JH et al (2015) Pharmacokinetics of Raltegravir in HIV-infected patients on rifampicin-based antitubercular therapy. Clin Infect Dis 61(8):1328–1335
Article
CAS
PubMed
Google Scholar
Reynolds HE, Chrdle A, Egan D, Chaponda M, Else L, Chiong J et al (2015) Effect of intermittent rifampicin on the pharmacokinetics and safety of raltegravir. J Antimicrob Chemother 70(2):550–554
Article
CAS
PubMed
Google Scholar
Grinsztejn B, De Castro N, Arnold V, Veloso VG, Morgado M, Pilotto JH et al (2014) Raltegravir for the treatment of patients co-infected with HIV and tuberculosis (ANRS 12 180 Reflate TB): a multicentre, phase 2, non-comparative, open-label, randomised trial. Lancet Infect Dis 14(6):459–467
Article
CAS
PubMed
Google Scholar
Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C et al (2009) Sustained antiretroviral effect of raltegravir after 96 weeks of combination therapy in treatment-naive patients with HIV-1 infection. J Acquir Immune Defic Syndr 52(3):350–356
Article
CAS
PubMed
Google Scholar
Dooley KE, Sayre P, Borland J, Purdy E, Chen S, Song I et al (2012) Safety, tolerability, and pharmacokinetics of the HIV integrase inhibitor dolutegravir given twice daily with rifampin or once daily with rifabutin: results of a phase 1 study among healthy subjects. J Acquir Immune Defic Syndr:15
Google Scholar
Lee JS, Calmy A, Andrieux-Meyer I, Ford N (2012) Review of the safety, efficacy, and pharmacokinetics of elvitegravir with an emphasis on resource-limited settings. HIV AIDS (Auckl) 4:5–15
Google Scholar
Zhang H, Custodio JM, Wei X, Wang H, Vu A, Ling J, et al. Clinical pharmacology of the HIV integrase strand transfer inhibitor bictegravir. 2017
Google Scholar
Tseng A, Hughes CA, Wu J, Seet J, Phillips EJ (2017) Cobicistat versus ritonavir: similar pharmacokinetic enhancers but some important differences. Ann Pharmacother 51(11):1008–1022
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts O, Khoo S, Owen A, Siccardi M (2017) Interaction of Rifampin and Darunavir-Ritonavir or Darunavir-Cobicistat In Vitro. Antimicrob Agents Chemother 61(5):16
Article
Google Scholar
Acosta EP, Kendall MA, Gerber JG, Alston-Smith B, Koletar SL, Zolopa AR et al (2007) Effect of concomitantly administered rifampin on the pharmacokinetics and safety of atazanavir administered twice daily. Antimicrob Agents Chemother 51(9):3104–3110
Article
CAS
PubMed
PubMed Central
Google Scholar
Burger DM, Agarwala S, Child M, Been-Tiktak A, Wang Y, Bertz R (2006) Effect of rifampin on steady-state pharmacokinetics of atazanavir with ritonavir in healthy volunteers. Antimicrob Agents Chemother 50(10):3336–3342
Article
CAS
PubMed
PubMed Central
Google Scholar
LaPorte C, Colbers E, Bertz R, Vonchek D, Wikstrom K, Boeree M et al (2004) Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrob Agents Chemother 48(5):1553–1560
Article
CAS
Google Scholar
Decloedt EH, McIlleron H, Smith P, Merry C, Orrell C, Maartens G (2011) Pharmacokinetics of lopinavir in HIV-infected adults receiving rifampin with adjusted doses of lopinavir-ritonavir tablets. Antimicrob Agents Chemother 55(7):3195–3200
Article
CAS
PubMed
PubMed Central
Google Scholar
Decloedt EH, Maartens G, Smith P, Merry C, Bango F, McIlleron H (2012) The safety, effectiveness and concentrations of adjusted lopinavir/ritonavir in HIV-infected adults on rifampicin-based antitubercular therapy. PLoS One 7(3):e32173
Article
CAS
PubMed
PubMed Central
Google Scholar
L'homme RF, Nijland HM, Gras L, Aarnoutse RE, van Crevel R, Boeree M et al (2009) Clinical experience with the combined use of lopinavir/ritonavir and rifampicin. AIDS 27(7):863–865
Article
Google Scholar
Sunpath H, Winternheimer P, Cohen S, Tennant I, Chelin N, Gandhi RT et al (2014) Double-dose lopinavir-ritonavir in combination with rifampicin-based anti-tuberculosis treatment in South Africa. Int J Tuberc Lung Dis 18(6):689–693
Article
CAS
PubMed
Google Scholar
Murphy RA, Marconi VC, Gandhi RT, Kuritzkes DR, Sunpath H (2012) Coadministration of lopinavir/ritonavir and rifampicin in HIV and tuberculosis co-infected adults in South Africa. PLoS One 7(9):e44793
Article
CAS
PubMed
PubMed Central
Google Scholar
Abel S, Jenkins TM, Whitlock LA, Ridgway CE, Muirhead GJ (2008) Effects of CYP3A4 inducers with and without CYP3A4 inhibitors on the pharmacokinetics of maraviroc in healthy volunteers. Br J Clin Pharmacol 65(Suppl 1):38–46
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyd MA, Zhang X, Dorr A, Ruxrungtham K, Kolis S, Nieforth K et al (2003) Lack of enzyme-inducing effect of rifampicin on the pharmacokinetics of enfuvirtide. J Clin Pharmacol 43(12):1382–1391
Article
CAS
PubMed
Google Scholar
Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S et al (2017) High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis 17(1):39–49
Article
CAS
PubMed
PubMed Central
Google Scholar
Heifets L (1999) Microbiological aspects of rifapentine. Drugs Today 35(Suppl. D):7
CAS
Google Scholar
Dooley KE, Bliven-Sizemore EE, Weiner M, Lu Y, Nuermberger EL, Hubbard WC et al (2012) Safety and Pharmacokinetics of Escalating Daily Doses of the Antituberculosis Drug Rifapentine in Healthy Volunteers. Clin Pharmacol Ther 91(5). https://doi.org/10.1038/clpt.2011.323
Burman W, Dooley KE, Nuermberger E (2011) The rifamycins: renewed interest in an old drug class. In: Donald P, van Helden P (eds) Antituberculosis chemotherapy, vol 40. Karger AG—Medical and Scientific Publishers, Basel
Chapter
Google Scholar
Davies G, Cerri S, Richeldi L (2007) Rifabutin for treating pulmonary tuberculosis. Cochrane Database Syst Rev (4). CD005159
Google Scholar
Blaschke TF, Skinner MH (1996) The clinical pharmacokinetics of rifabutin. Clin Infect Dis 22(Suppl 1):2
Google Scholar
Tseng AL, Walmsley SL (1995) Rifabutin-associated uveitis. Ann Pharmacother 29(11):1149–1155
Article
CAS
PubMed
Google Scholar
Griffith DE, Brown BA (1996) Wallace RJ,Jr. Varying dosages of rifabutin affect white blood cell and platelet counts in human immunodeficiency virus--negative patients who are receiving multidrug regimens for pulmonary Mycobacterium avium complex disease. Clin Infect Dis 23(6):1321–1322
Article
CAS
PubMed
Google Scholar
Khachi H, O'Connell R, Ladenheim D, Orkin C (2009) Pharmacokinetic interactions between rifabutin and lopinavir/ritonavir in HIV-infected patients with mycobacterial co-infection. J Antimicrob Chemother 64(4):871–873
Article
CAS
PubMed
Google Scholar
Jenny-Avital ER, Joseph K (2009) Rifamycin-resistant Mycobacterium tuberculosis in the highly active antiretroviral therapy era: a report of 3 relapses with acquired rifampin resistance following alternate-day rifabutin and boosted protease inhibitor therapy. Clin Infect Dis 48(10):1471–1474
Article
CAS
PubMed
Google Scholar
Boulanger C, Hollender E, Farrell K, Stambaugh JJ, Maasen D, Ashkin D et al (2009) Pharmacokinetic evaluation of rifabutin in combination with lopinavir-ritonavir in patients with HIV infection and active tuberculosis. Clin Infect Dis 49(9):1305–1311
Article
CAS
PubMed
Google Scholar
Ramachandran G, Bhavani PK, Hemanth Kumar AK, Srinivasan R, Raja K, Sudha V et al (2013) Pharmacokinetics of rifabutin during atazanavir/ritonavir co-administration in HIV-infected TB patients in India. Int J Tuberc Lung Dis 17(12):1564–1568
Article
CAS
PubMed
Google Scholar
Jenks JD, Kumarasamy N, Ezhilarasi C, Poongulali S, Ambrose P, Yepthomi T et al (2016) Improved tuberculosis outcomes with daily vs. intermittent rifabutin in HIV-TB coinfected patients in India. Int J Tuberc Lung Dis 20(9):1181–1184
Article
CAS
PubMed
Google Scholar
Lan NT, Thu NT, Barrail-Tran A, Duc NH, Lan NN, Laureillard D et al (2014) Randomised pharmacokinetic trial of rifabutin with lopinavir/ritonavir-antiretroviral therapy in patients with HIV-associated tuberculosis in Vietnam. PLoS One 9(1):e84866
Article
PubMed
PubMed Central
CAS
Google Scholar
Naiker S, Connolly C, Wiesner L, Kellerman T, Reddy T, Harries A et al (2014) Randomized pharmacokinetic evaluation of different rifabutin doses in African HIV- infected tuberculosis patients on lopinavir/ritonavir-based antiretroviral therapy. BMC Pharmacol Toxicol 15:61
Article
PubMed
PubMed Central
CAS
Google Scholar
Yapa HM, Boffito M, Pozniak A (2016) Critical review: what dose of rifabutin is recommended with antiretroviral therapy? J Acquir Immune Defic Syndr 72(2):138–152
Article
CAS
PubMed
Google Scholar
Crauwels H, van Heeswijk RP, Stevens M, Buelens A, Vanveggel S, Boven K et al (2013) Clinical perspective on drug-drug interactions with the non-nucleoside reverse transcriptase inhibitor rilpivirine. AIDS Rev 15(2):87–101
PubMed
Google Scholar
Kakuda TN, Woodfall B, De Marez T, Peeters M, Vandermeulen K, Aharchi F et al (2014) Pharmacokinetic evaluation of the interaction between etravirine and rifabutin or clarithromycin in HIV-negative, healthy volunteers: results from two Phase 1 studies. J Antimicrob Chemother 69(3):728–734
Article
CAS
PubMed
Google Scholar
Brainard DM, Kassahun K, Wenning LA, Petry AS, Liu C, Lunceford J et al (2011) Lack of a clinically meaningful pharmacokinetic effect of rifabutin on raltegravir: in vitro/in vivo correlation. J Clin Pharmacol 51(6):943–950
Article
CAS
PubMed
Google Scholar
Ramanathan S, Mathias AA, German P, Kearney BP (2011) Clinical pharmacokinetic and pharmacodynamic profile of the HIV integrase inhibitor elvitegravir. Clin Pharmacokinet 50(4):229–244
Article
CAS
PubMed
Google Scholar
World Health Organization (2016) WHO treatment guidelines for drug-resistant tuberculosis: 2016 update
Google Scholar
Brust JCM, Shah NS, Mlisana K, Moodley P, Allana S, Campbell A et al (2017) Improved survival and cure rates with concurrent treatment for MDR-TB/HIV co-infection in South Africa. Clin Infect Dis:26
Google Scholar
Satti H, McLaughlin MM, Hedt-Gauthier B, Atwood SS, Omotayo DB, Ntlamelle L et al (2012) Outcomes of multidrug-resistant tuberculosis treatment with early initiation of antiretroviral therapy for HIV co-infected patients in Lesotho. PLoS One 7(10):e46943
Article
CAS
PubMed
PubMed Central
Google Scholar
Naidoo A, Chirehwa M, McIlleron H, Naidoo K, Essack S, Yende-Zuma N et al (2017) Effect of rifampicin and efavirenz on moxifloxacin concentrations when co-administered in patients with drug-susceptible TB. J Antimicrob Chemother 72(5):1441–1449
Article
CAS
PubMed
PubMed Central
Google Scholar
Coyne KM, Pozniak AL, Lamorde M, Boffito M (2009) Pharmacology of second-line antituberculosis drugs and potential for interactions with antiretroviral agents. AIDS 23(4):437–446
Article
PubMed
Google Scholar
Svensson EM, Karlsson MO (2017) Modelling of mycobacterial load reveals bedaquiline's exposure-response relationship in patients with drug-resistant TB. J Antimicrob Chemother 72(12):3398–3405
Article
CAS
PubMed
PubMed Central
Google Scholar
van Heeswijk RP, Dannemann B, Hoetelmans RM (2014) Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 69(9):2310–2318
Article
PubMed
CAS
Google Scholar
Svensson EM, Dooley KE, Karlsson MO (2014) Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis-HIV coinfection. Antimicrob Agents Chemother 58(11):6406–6412
Article
PubMed
PubMed Central
CAS
Google Scholar
Pandie M, Wiesner L, McIlleron H, Hughes J, Siwendu S, Conradie F et al (2016) Drug-drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB. J Antimicrob Chemother 71(4):1037–1040
Article
CAS
PubMed
Google Scholar
Brill MJ, Svensson EM, Pandie M, Maartens G, Karlsson MO (2017) Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug-resistant tuberculosis. Int J Antimicrob Agents 49(2):212–217
Article
CAS
PubMed
Google Scholar
Dooley KE, Park JG, Swindells S, Allen R, Haas DW, Cramer Y et al (2012) Safety, tolerability, and pharmacokinetic interactions of the antituberculous agent TMC207 (Bedaquiline) with efavirenz in healthy volunteers: AIDS Clinical Trials Group Study A5267. J Acquir Immune Defic Syndr 59(5):455–462
Article
CAS
PubMed
PubMed Central
Google Scholar
Svensson EM, Aweeka F, Park JG, Marzan F, Dooley KE, Karlsson MO (2013) Model-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosis. Antimicrob Agents Chemother 57(6):2780–2787
Article
CAS
PubMed
PubMed Central
Google Scholar
Mallikaarjun S, Wells C, Petersen C, Paccaly A, Shoaf SE, Patil S et al (2016) Delamanid coadministered with antiretroviral drugs or antituberculosis drugs shows no clinically relevant drug-drug interactions in healthy subjects. Antimicrob Agents Chemother 60(10):5976–5985
Article
CAS
PubMed
PubMed Central
Google Scholar
World Health Organization (2016) Tuberculosis fact sheet: tuberculosis in women
Google Scholar
Say L, Chou D, Gemmill A, Tuncalp O, Moller AB, Daniels J et al (2014) Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health 2(6):323
Article
Google Scholar
Zenner D, Kruijshaar ME, Andrews N, Abubakar I (2012) Risk of tuberculosis in pregnancy: a national, primary care-based cohort and self-controlled case series study. Am J Respir Crit Care Med 185(7):779–784
Article
PubMed
Google Scholar
Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. [Internet]. [cited April 10 2009]. Available from: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf
Pillay T, Khan M, Moodley J, Adhikari M, Coovadia H (2004) Perinatal tuberculosis and HIV-1: considerations for resource-limited settings. Lancet Infect Dis 4(3):155–165
Article
CAS
PubMed
Google Scholar
Loebstein R, Lalkin A, Koren G (1997) Pharmacokinetic changes during pregnancy and their clinical relevance. Clin Pharmacokinet 33(5):328–343
Article
CAS
PubMed
Google Scholar
Mirochnick M, Best BM, Stek AM, Capparelli E, Hu C, Burchett SK et al (2008) Lopinavir exposure with an increased dose during pregnancy. J Acquir Immune Defic Syndr 49(5):485–491
Article
PubMed
PubMed Central
Google Scholar
Bonafe SM, Costa DA, Vaz MJ, Senise JF, Pott-Junior H, Machado RH et al (2013) A randomized controlled trial to assess safety, tolerability, and antepartum viral load with increased lopinavir/ritonavir dosage in pregnancy. AIDS Patient Care STDs 27(11):589–595
Article
PubMed
PubMed Central
Google Scholar
Hesseling AC, Westra AE, Werschkull H, Donald PR, Beyers N, Hussey GD et al (2005) Outcome of HIV infected children with culture confirmed tuberculosis. Arch Dis Child 90(11):1171–1174
Article
CAS
PubMed
PubMed Central
Google Scholar
Marais BJ, Schaaf HS (2014) Tuberculosis in children. Cold Spring Harb Perspect Med 4(9):a017855
Article
PubMed
PubMed Central
Google Scholar
Newell ML, Coovadia H, Cortina-Borja M, Rollins N, Gaillard P, Dabis F et al (2008) Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet 364(9441):1236–1243
Article
Google Scholar
Essential medicines and health products: finished pharmaceutical products [Internet]. Available from: https://extranet.who.int/prequal/content/prequalified-lists/medicines?label=&field_medicine_applicant=&field_medicine_fpp_site_value=&search_api_aggregation_1=&field_medicine_pq_date%5Bdate%5D=&field_medicine_pq_date_1%5Bdate%5D=&field_therapeutic_area=23&field_medicine_status=&field_basis_of_listing=43&field_single_fixed_dose_list%5B%5D=2&field_single_fixed_dose_list%5B%5D=3&field_single_fixed_dose_list%5B%5D=4&field_single_fixed_dose_list%5B%5D=&field_co_packed_list%5B%5D=2
Moultrie H, McIlleron H, Sawry S, Kellermann T, Wiesner L, Kindra G et al (2015) Pharmacokinetics and safety of rifabutin in young HIV-infected children receiving rifabutin and lopinavir/ritonavir. J Antimicrob Chemother 70(2):543–549
Article
CAS
PubMed
Google Scholar
Ren Y, Nuttall JJ, Egbers C, Eley BS, Meyers TM, Smith PJ et al (2008) Effect of rifampicin on lopinavir pharmacokinetics in HIV-infected children with tuberculosis. J Acquir Immune Defic Syndr 47(5):566–569
Article
CAS
PubMed
Google Scholar
McIlleron H, Ren Y, Nuttall J, Fairlie L, Rabie H, Cotton M et al (2011) Lopinavir exposure is insufficient in children given double doses of lopinavir/ritonavir during rifampicin-based treatment for tuberculosis. Antivir Ther 16(3):417–421
Article
CAS
PubMed
Google Scholar
Zhang C, McIlleron H, Ren Y, van der Walt JS, Karlsson MO, Simonsson US et al (2012) Population pharmacokinetics of lopinavir and ritonavir in combination with rifampicin-based antitubercular treatment in HIV-infected children. Antivir Ther 17(1):25–33
Article
PubMed
PubMed Central
CAS
Google Scholar
Ren Y, Nuttall JJ, Eley BS, Meyers TM, Smith PJ, Maartens G et al (2009) Effect of rifampicin on efavirenz pharmacokinetics in HIV-infected children with tuberculosis. J Acquir Immune Defic Syndr 50(5):439–443
Article
CAS
PubMed
Google Scholar
Zanoni BC, Phungula T, Zanoni HM, France H, Feeney ME (2011) Impact of tuberculosis cotreatment on viral suppression rates among HIV-positive children initiating HAART. AIDS 25(1):49–55
Article
PubMed
Google Scholar
Oudijk JM, McIlleron H, Mulenga V, Chintu C, Merry C, Walker AS et al (2012) Pharmacokinetics of nevirapine in HIV-infected children under 3 years on rifampicin-based antituberculosis treatment. AIDS 26(12):1523–1528
Article
CAS
PubMed
Google Scholar
Kamateeka MML, Mudiope P, Mubiru M, Ajuna P, Lutajumwa M, Musoke P (2009) Immunological and virological response to fixed-dose nevirapine based highly active antiretroviral therapy (HAART) in HIV-infected Ugandan children with concurrent active tuberculosis infection on rifampicin-based anti-TB treatment. IAS, Cape Town
Google Scholar
Kwara A, Ramachandran G, Swaminathan S (2010 Jan) Dose adjustment of the non-nucleoside reverse transcriptase inhibitors during concurrent rifampicin-containing tuberculosis therapy: one size does not fit all. Expert Opin Drug Metab Toxicol 6(1):55–68
Article
CAS
PubMed
PubMed Central
Google Scholar