Skip to main content

Immune Responses to Mycobacterium tuberculosis and the Impact of HIV Infection

  • Chapter
  • First Online:
HIV and Tuberculosis
  • 892 Accesses

  • 3 Citations

Abstract

Mycobacterium tuberculosis control relies on a well-orchestrated immune response, where a complex array of innate and adaptive immune cells responses act synergistically to restrict Mycobacterium tuberculosis growth. While different immune cell subsets have been associated with protection in experimental models of TB, it is still unclear exactly what type of immune responses are required to confer protection in humans.

People living with HIV are around 20 times more likely to develop active TB. The clearest immune defect caused by HIV is a progressive reduction in absolute CD4 T cell numbers that correlates with increasing risk of active TB. However, shortly after HIV acquisition or when CD4 T cell numbers improve upon HIV treatment, the risk of active TB remains heightened. This indicates that, independently of the overall CD4 T cell depletion, HIV infection also induces qualitative changes weakening protective TB immune responses.

This chapter section covers the human immune response to Mycobacterium tuberculosis and describes the impact of HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 99.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12(8):581–591

    CAS  PubMed  Google Scholar 

  2. Deeks SG, Tracy R, Douek DC (2013) Systemic effects of inflammation on health during chronic HIV infection. Immunity 39(4):633–645

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    CAS  PubMed  Google Scholar 

  4. Pahari S, Kaur G, Aqdas M, Negi S, Chatterjee D, Bashir H et al (2017) Bolstering immunity through pattern recognition receptors: a unique approach to control tuberculosis. Front Immunol 8:906

    PubMed  PubMed Central  Google Scholar 

  5. Lowe DM, Bandara AK, Packe GE, Barker RD, Wilkinson RJ, Griffiths CJ et al (2013) Neutrophilia independently predicts death in tuberculosis. Eur Respir J 42(6):1752–1757

    PubMed  PubMed Central  Google Scholar 

  6. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114–1123

    CAS  PubMed  Google Scholar 

  7. Vorkas CK, Wipperman MF, Li K, Bean J, Bhattarai SK, Adamow M et al (2018) Mucosal-associated invariant and gammadelta T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight 3(19). https://doi.org/10.1172/jci.insight.121899

  8. Kee SJ, Kwon YS, Park YW, Cho YN, Lee SJ, Kim TJ et al (2012) Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 80(6):2100–2108

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8(9):668–674

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Queval CJ, Brosch R, Simeone R (2017) The macrophage: a disputed fortress in the battle against Mycobacterium tuberculosis. Front Microbiol 8:2284

    PubMed  PubMed Central  Google Scholar 

  11. Khan N, Vidyarthi A, Javed S, Agrewala JN (2016) Innate immunity holding the flanks until reinforced by adaptive immunity against Mycobacterium tuberculosis infection. Front Microbiol 7:328

    PubMed  PubMed Central  Google Scholar 

  12. Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51

    PubMed  PubMed Central  Google Scholar 

  13. Sattentau QJ, Stevenson M (2016) Macrophages and HIV-1: an unhealthy constellation. Cell Host Microbe 19(3):304–310

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cosgrove C, Ussher JE, Rauch A, Gartner K, Kurioka A, Huhn MH et al (2013) Early and nonreversible decrease of CD161++/MAIT cells in HIV infection. Blood 121(6):951–961

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kasprowicz VO, Cheng TY, Ndung’u T, Sunpath H, Moody DB, Kasmar AG (2016) HIV disrupts human T cells that target mycobacterial glycolipids. J Infect Dis 213(4):628–633

    CAS  PubMed  Google Scholar 

  16. Pauza CD, Poonia B, Li H, Cairo C, Chaudhry S (2014) Gammadelta T Cells in HIV disease: past, present, and future. Front Immunol 5:687

    PubMed  Google Scholar 

  17. Juno JA, Phetsouphanh C, Klenerman P, Kent SJ (2019) Perturbation of mucosal-associated invariant T cells and iNKT cells in HIV infection. Curr Opin HIV AIDS 14(2):77–84

    PubMed  Google Scholar 

  18. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345(15):1098–1104

    CAS  PubMed  Google Scholar 

  19. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R et al (1996) A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335(26):1941–1949

    CAS  PubMed  Google Scholar 

  20. Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV et al (2016) CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 12(5):e1005667

    PubMed  PubMed Central  Google Scholar 

  21. Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A (2011) CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol 186(3):1598–1607

    CAS  PubMed  Google Scholar 

  22. Barber DL, Sakai S, Kudchadkar RR, Fling SP, Day TA, Vergara JA et al (2019) Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med 11(475):eaat2702

    PubMed  PubMed Central  Google Scholar 

  23. Kozakiewicz L, Phuah J, Flynn J, Chan J (2013) The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv Exp Med Biol 783:225–250

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Costello AM, Kumar A, Narayan V, Akbar MS, Ahmed S, Abou-Zeid C et al (1992) Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans R Soc Trop Med Hyg 86(6):686–692

    CAS  PubMed  Google Scholar 

  25. Li H, Wang XX, Wang B, Fu L, Liu G, Lu Y et al (2017) Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 114(19):5023–5028

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A et al (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77(21):11708–11717

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Monteiro P, Gosselin A, Wacleche VS, El-Far M, Said EA, Kared H et al (2011) Memory CCR6+CD4+ T cells are preferential targets for productive HIV type 1 infection regardless of their expression of integrin beta7. J Immunol 186(8):4618–4630

    CAS  PubMed  Google Scholar 

  28. Brenchley JM, Price DA, Douek DC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7(3):235–239

    CAS  PubMed  Google Scholar 

  29. Corleis B, Bucsan AN, Deruaz M, Vrbanac VD, Lisanti-Park AC, Gates SJ et al (2019) HIV-1 and SIV infection are associated with early loss of lung interstitial CD4+ T cells and dissemination of pulmonary tuberculosis. Cell Rep 26(6):1409–1418. e5

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S (2005) How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191(2):150–158

    PubMed  Google Scholar 

  31. Geldmacher C, Ngwenyama N, Schuetz A, Petrovas C, Reither K, Heeregrave EJ et al (2010) Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med 207(13):2869–2881

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cattamanchi A, Smith R, Steingart KR, Metcalfe JZ, Date A, Coleman C et al (2011) Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr 56(3):230–238

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bunjun R, Riou C, Soares AP, Thawer N, Muller TL, Kiravu A et al (2017) Effect of HIV on the frequency and number of Mycobacterium tuberculosis-specific CD4+ T cells in blood and airways during latent M. tuberculosis infection. J Infect Dis 216(12):1550–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Neff CP, Chain JL, MaWhinney S, Martin AK, Linderman DJ, Flores SC et al (2015) Lymphocytic alveolitis is associated with the accumulation of functionally impaired HIV-specific T cells in the lung of antiretroviral therapy-naive subjects. Am J Respir Crit Care Med 191(4):464–473

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Day CL, Mkhwanazi N, Reddy S, Mncube Z, van der Stok M, Klenerman P et al (2008) Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1-infected persons. J Infect Dis 197(7):990–999

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bell LC, Pollara G, Pascoe M, Tomlinson GS, Lehloenya RJ, Roe J et al (2016) In vivo molecular dissection of the effects of HIV-1 in active tuberculosis. PLoS Pathog 12(3):e1005469

    PubMed  PubMed Central  Google Scholar 

  37. Appay V, Kelleher AD (2016) Immune activation and immune aging in HIV infection. Curr Opin HIV AIDS 11(2):242–249

    CAS  PubMed  Google Scholar 

  38. Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sasindran SJ, Torrelles JB (2011) Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol 2:2

    PubMed  PubMed Central  Google Scholar 

  40. Crump JA, Ramadhani HO, Morrissey AB, Saganda W, Mwako MS, Yang LY et al (2012) Bacteremic disseminated tuberculosis in sub-saharan Africa: a prospective cohort study. Clin Infect Dis 55(2):242–250

    PubMed  PubMed Central  Google Scholar 

  41. Lieberman TD, Wilson D, Misra R, Xiong LL, Moodley P, Cohen T et al (2016) Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat Med 22(12):1470–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ryndak MB, Singh KK, Peng Z, Zolla-Pazner S, Li H, Meng L et al (2014) Transcriptional profiling of Mycobacterium tuberculosis replicating ex vivo in blood from HIV- and HIV+ subjects. PLoS One 9(4):e94939

    PubMed  PubMed Central  Google Scholar 

  43. Harding JS, Rayasam A, Schreiber HA, Fabry Z, Sandor M (2015) Mycobacterium-infected dendritic cells disseminate granulomatous inflammation. Sci Rep 5:15248

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS, Walton EM et al (2015) Interception of host angiogenic signalling limits mycobacterial growth. Nature 517(7536):612–615

    CAS  PubMed  Google Scholar 

  45. Nusbaum RJ, Calderon VE, Huante MB, Sutjita P, Vijayakumar S, Lancaster KL et al (2016) Pulmonary tuberculosis in humanized mice infected with HIV-1. Sci Rep 6:21522

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Diedrich CR, O’Hern J, Wilkinson RJ (2016) HIV-1 and the Mycobacterium tuberculosis granuloma: a systematic review and meta-analysis. Tuberculosis (Edinb) 98:62–76

    CAS  Google Scholar 

  47. Dannenberg AM Jr (2006) Pathogenesis of human pulmonary tuberculosis: insights from the rabbit model. ASM Press, Washington, DC

    Google Scholar 

  48. Hunter RL (2016) Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 97:8–17

    Google Scholar 

  49. Elkington PT, Ugarte-Gil CA, Friedland JS (2011) Matrix metalloproteinases in tuberculosis. Eur Respir J 38(2):456–464

    CAS  PubMed  Google Scholar 

  50. Walker NF, Clark SO, Oni T, Andreu N, Tezera L, Singh S et al (2012) Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 185(9):989–997

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Panteleev AV, Nikitina IY, Burmistrova IA, Kosmiadi GA, Radaeva TV, Amansahedov RB et al (2017) Severe tuberculosis in humans correlates best with neutrophil abundance and lymphocyte deficiency and does not correlate with antigen-specific CD4 T-cell response. Front Immunol 8:963

    PubMed  PubMed Central  Google Scholar 

  53. Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G (2018) The immune mechanisms of lung parenchymal damage in tuberculosis and the role of host-directed therapy. Front Microbiol 9:2603

    PubMed  PubMed Central  Google Scholar 

  54. Kwan CK, Ernst JD (2011) HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24(2):351–376

    PubMed  PubMed Central  Google Scholar 

  55. Walker NF, Wilkinson KA, Meintjes G, Tezera LB, Goliath R, Peyper JM et al (2017) Matrix degradation in human immunodeficiency virus type 1—associated tuberculosis and tuberculosis immune reconstitution inflammatory syndrome: a prospective observational study. Clin Infect Dis 65(1):121–132

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lowe DM, Bangani N, Goliath R, Kampmann B, Wilkinson KA, Wilkinson RJ et al (2015) Effect of antiretroviral therapy on HIV-mediated impairment of the neutrophil antimycobacterial response. Ann Am Thorac Soc 12(11):1627–1637

    PubMed  PubMed Central  Google Scholar 

  57. Manji M, Shayo G, Mamuya S, Mpembeni R, Jusabani A, Mugusi F (2016) Lung functions among patients with pulmonary tuberculosis in Dar es Salaam—a cross-sectional study. BMC Pulm Med 16(1):58

    PubMed  PubMed Central  Google Scholar 

  58. Mbatchou Ngahane BH, Nouyep J, Nganda Motto M, Mapoure Njankouo Y, Wandji A, Endale M et al (2016) Post-tuberculous lung function impairment in a tuberculosis reference clinic in Cameroon. Respir Med 114:67–71

    PubMed  Google Scholar 

  59. Ralph AP, Kenangalem E, Waramori G, Pontororing GJ, Sandjaja TE et al (2013) High morbidity during treatment and residual pulmonary disability in pulmonary tuberculosis: under-recognised phenomena. PLoS One 8(11):e80302

    PubMed  PubMed Central  Google Scholar 

  60. Mugo PN, Mecha J, Muhwa C (2018) Pulmonary function and quality of life in patients with treated smear positive pulmonary tuberculosis at three tuberculosis clinics in Nairobi, Kenya. Eur Respir J. 52:Suppl. 62, PA2749.

    Google Scholar 

  61. Corbeau P, Reynes J (2011) Immune reconstitution under antiretroviral therapy: the new challenge in HIV-1 infection. Blood 117(21):5582–5590

    CAS  PubMed  Google Scholar 

  62. Wilson EM, Sereti I (2013) Immune restoration after antiretroviral therapy: the pitfalls of hasty or incomplete repairs. Immunol Rev 254(1):343–354

    PubMed  PubMed Central  Google Scholar 

  63. Hunt PW, Lee SA, Siedner MJ (2016) Immunologic biomarkers, morbidity, and mortality in treated HIV infection. J Infect Dis 214(Suppl 2):S44–S50

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nabatanzi R, Cose S, Joloba M, Jones SR, Nakanjako D (2018) Effects of HIV infection and ART on phenotype and function of circulating monocytes, natural killer, and innate lymphoid cells. AIDS Res Ther 15(1):7

    PubMed  PubMed Central  Google Scholar 

  65. Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD (2012) Tuberculosis incidence rates during 8 years of follow-up of an antiretroviral treatment cohort in South Africa: comparison with rates in the community. PLoS One 7(3):e34156

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This figure was developed by Avuyonke Balfour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Riou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riou, C., Stek, C., Du Bruyn, E. (2019). Immune Responses to Mycobacterium tuberculosis and the Impact of HIV Infection. In: Sereti, I., Bisson, G.P., Meintjes, G. (eds) HIV and Tuberculosis. Springer, Cham. https://doi.org/10.1007/978-3-030-29108-2_4

Download citation

Publish with us

Policies and ethics