Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12(8):581–591
CAS
PubMed
Google Scholar
Deeks SG, Tracy R, Douek DC (2013) Systemic effects of inflammation on health during chronic HIV infection. Immunity 39(4):633–645
CAS
PubMed
PubMed Central
Google Scholar
Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650
CAS
PubMed
Google Scholar
Pahari S, Kaur G, Aqdas M, Negi S, Chatterjee D, Bashir H et al (2017) Bolstering immunity through pattern recognition receptors: a unique approach to control tuberculosis. Front Immunol 8:906
PubMed
PubMed Central
Google Scholar
Lowe DM, Bandara AK, Packe GE, Barker RD, Wilkinson RJ, Griffiths CJ et al (2013) Neutrophilia independently predicts death in tuberculosis. Eur Respir J 42(6):1752–1757
PubMed
PubMed Central
Google Scholar
Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114–1123
CAS
PubMed
Google Scholar
Vorkas CK, Wipperman MF, Li K, Bean J, Bhattarai SK, Adamow M et al (2018) Mucosal-associated invariant and gammadelta T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight 3(19). https://doi.org/10.1172/jci.insight.121899
Kee SJ, Kwon YS, Park YW, Cho YN, Lee SJ, Kim TJ et al (2012) Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 80(6):2100–2108
CAS
PubMed
PubMed Central
Google Scholar
Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8(9):668–674
CAS
PubMed
PubMed Central
Google Scholar
Queval CJ, Brosch R, Simeone R (2017) The macrophage: a disputed fortress in the battle against Mycobacterium tuberculosis. Front Microbiol 8:2284
PubMed
PubMed Central
Google Scholar
Khan N, Vidyarthi A, Javed S, Agrewala JN (2016) Innate immunity holding the flanks until reinforced by adaptive immunity against Mycobacterium tuberculosis infection. Front Microbiol 7:328
PubMed
PubMed Central
Google Scholar
Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51
PubMed
PubMed Central
Google Scholar
Sattentau QJ, Stevenson M (2016) Macrophages and HIV-1: an unhealthy constellation. Cell Host Microbe 19(3):304–310
CAS
PubMed
PubMed Central
Google Scholar
Cosgrove C, Ussher JE, Rauch A, Gartner K, Kurioka A, Huhn MH et al (2013) Early and nonreversible decrease of CD161++/MAIT cells in HIV infection. Blood 121(6):951–961
CAS
PubMed
PubMed Central
Google Scholar
Kasprowicz VO, Cheng TY, Ndung’u T, Sunpath H, Moody DB, Kasmar AG (2016) HIV disrupts human T cells that target mycobacterial glycolipids. J Infect Dis 213(4):628–633
CAS
PubMed
Google Scholar
Pauza CD, Poonia B, Li H, Cairo C, Chaudhry S (2014) Gammadelta T Cells in HIV disease: past, present, and future. Front Immunol 5:687
PubMed
Google Scholar
Juno JA, Phetsouphanh C, Klenerman P, Kent SJ (2019) Perturbation of mucosal-associated invariant T cells and iNKT cells in HIV infection. Curr Opin HIV AIDS 14(2):77–84
PubMed
Google Scholar
Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345(15):1098–1104
CAS
PubMed
Google Scholar
Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R et al (1996) A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335(26):1941–1949
CAS
PubMed
Google Scholar
Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV et al (2016) CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 12(5):e1005667
PubMed
PubMed Central
Google Scholar
Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A (2011) CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol 186(3):1598–1607
CAS
PubMed
Google Scholar
Barber DL, Sakai S, Kudchadkar RR, Fling SP, Day TA, Vergara JA et al (2019) Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med 11(475):eaat2702
PubMed
PubMed Central
Google Scholar
Kozakiewicz L, Phuah J, Flynn J, Chan J (2013) The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv Exp Med Biol 783:225–250
CAS
PubMed
PubMed Central
Google Scholar
Costello AM, Kumar A, Narayan V, Akbar MS, Ahmed S, Abou-Zeid C et al (1992) Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans R Soc Trop Med Hyg 86(6):686–692
CAS
PubMed
Google Scholar
Li H, Wang XX, Wang B, Fu L, Liu G, Lu Y et al (2017) Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 114(19):5023–5028
CAS
PubMed
PubMed Central
Google Scholar
Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A et al (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77(21):11708–11717
CAS
PubMed
PubMed Central
Google Scholar
Monteiro P, Gosselin A, Wacleche VS, El-Far M, Said EA, Kared H et al (2011) Memory CCR6+CD4+ T cells are preferential targets for productive HIV type 1 infection regardless of their expression of integrin beta7. J Immunol 186(8):4618–4630
CAS
PubMed
Google Scholar
Brenchley JM, Price DA, Douek DC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7(3):235–239
CAS
PubMed
Google Scholar
Corleis B, Bucsan AN, Deruaz M, Vrbanac VD, Lisanti-Park AC, Gates SJ et al (2019) HIV-1 and SIV infection are associated with early loss of lung interstitial CD4+ T cells and dissemination of pulmonary tuberculosis. Cell Rep 26(6):1409–1418. e5
CAS
PubMed
PubMed Central
Google Scholar
Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S (2005) How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191(2):150–158
PubMed
Google Scholar
Geldmacher C, Ngwenyama N, Schuetz A, Petrovas C, Reither K, Heeregrave EJ et al (2010) Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med 207(13):2869–2881
CAS
PubMed
PubMed Central
Google Scholar
Cattamanchi A, Smith R, Steingart KR, Metcalfe JZ, Date A, Coleman C et al (2011) Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr 56(3):230–238
CAS
PubMed
PubMed Central
Google Scholar
Bunjun R, Riou C, Soares AP, Thawer N, Muller TL, Kiravu A et al (2017) Effect of HIV on the frequency and number of Mycobacterium tuberculosis-specific CD4+ T cells in blood and airways during latent M. tuberculosis infection. J Infect Dis 216(12):1550–1560
CAS
PubMed
PubMed Central
Google Scholar
Neff CP, Chain JL, MaWhinney S, Martin AK, Linderman DJ, Flores SC et al (2015) Lymphocytic alveolitis is associated with the accumulation of functionally impaired HIV-specific T cells in the lung of antiretroviral therapy-naive subjects. Am J Respir Crit Care Med 191(4):464–473
CAS
PubMed
PubMed Central
Google Scholar
Day CL, Mkhwanazi N, Reddy S, Mncube Z, van der Stok M, Klenerman P et al (2008) Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1-infected persons. J Infect Dis 197(7):990–999
CAS
PubMed
PubMed Central
Google Scholar
Bell LC, Pollara G, Pascoe M, Tomlinson GS, Lehloenya RJ, Roe J et al (2016) In vivo molecular dissection of the effects of HIV-1 in active tuberculosis. PLoS Pathog 12(3):e1005469
PubMed
PubMed Central
Google Scholar
Appay V, Kelleher AD (2016) Immune activation and immune aging in HIV infection. Curr Opin HIV AIDS 11(2):242–249
CAS
PubMed
Google Scholar
Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278
CAS
PubMed
PubMed Central
Google Scholar
Sasindran SJ, Torrelles JB (2011) Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol 2:2
PubMed
PubMed Central
Google Scholar
Crump JA, Ramadhani HO, Morrissey AB, Saganda W, Mwako MS, Yang LY et al (2012) Bacteremic disseminated tuberculosis in sub-saharan Africa: a prospective cohort study. Clin Infect Dis 55(2):242–250
PubMed
PubMed Central
Google Scholar
Lieberman TD, Wilson D, Misra R, Xiong LL, Moodley P, Cohen T et al (2016) Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat Med 22(12):1470–1474
CAS
PubMed
PubMed Central
Google Scholar
Ryndak MB, Singh KK, Peng Z, Zolla-Pazner S, Li H, Meng L et al (2014) Transcriptional profiling of Mycobacterium tuberculosis replicating ex vivo in blood from HIV- and HIV+ subjects. PLoS One 9(4):e94939
PubMed
PubMed Central
Google Scholar
Harding JS, Rayasam A, Schreiber HA, Fabry Z, Sandor M (2015) Mycobacterium-infected dendritic cells disseminate granulomatous inflammation. Sci Rep 5:15248
CAS
PubMed
PubMed Central
Google Scholar
Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS, Walton EM et al (2015) Interception of host angiogenic signalling limits mycobacterial growth. Nature 517(7536):612–615
CAS
PubMed
Google Scholar
Nusbaum RJ, Calderon VE, Huante MB, Sutjita P, Vijayakumar S, Lancaster KL et al (2016) Pulmonary tuberculosis in humanized mice infected with HIV-1. Sci Rep 6:21522
CAS
PubMed
PubMed Central
Google Scholar
Diedrich CR, O’Hern J, Wilkinson RJ (2016) HIV-1 and the Mycobacterium tuberculosis granuloma: a systematic review and meta-analysis. Tuberculosis (Edinb) 98:62–76
CAS
Google Scholar
Dannenberg AM Jr (2006) Pathogenesis of human pulmonary tuberculosis: insights from the rabbit model. ASM Press, Washington, DC
Google Scholar
Hunter RL (2016) Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 97:8–17
Google Scholar
Elkington PT, Ugarte-Gil CA, Friedland JS (2011) Matrix metalloproteinases in tuberculosis. Eur Respir J 38(2):456–464
CAS
PubMed
Google Scholar
Walker NF, Clark SO, Oni T, Andreu N, Tezera L, Singh S et al (2012) Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 185(9):989–997
CAS
PubMed
PubMed Central
Google Scholar
Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977
CAS
PubMed
PubMed Central
Google Scholar
Panteleev AV, Nikitina IY, Burmistrova IA, Kosmiadi GA, Radaeva TV, Amansahedov RB et al (2017) Severe tuberculosis in humans correlates best with neutrophil abundance and lymphocyte deficiency and does not correlate with antigen-specific CD4 T-cell response. Front Immunol 8:963
PubMed
PubMed Central
Google Scholar
Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G (2018) The immune mechanisms of lung parenchymal damage in tuberculosis and the role of host-directed therapy. Front Microbiol 9:2603
PubMed
PubMed Central
Google Scholar
Kwan CK, Ernst JD (2011) HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24(2):351–376
PubMed
PubMed Central
Google Scholar
Walker NF, Wilkinson KA, Meintjes G, Tezera LB, Goliath R, Peyper JM et al (2017) Matrix degradation in human immunodeficiency virus type 1—associated tuberculosis and tuberculosis immune reconstitution inflammatory syndrome: a prospective observational study. Clin Infect Dis 65(1):121–132
CAS
PubMed
PubMed Central
Google Scholar
Lowe DM, Bangani N, Goliath R, Kampmann B, Wilkinson KA, Wilkinson RJ et al (2015) Effect of antiretroviral therapy on HIV-mediated impairment of the neutrophil antimycobacterial response. Ann Am Thorac Soc 12(11):1627–1637
PubMed
PubMed Central
Google Scholar
Manji M, Shayo G, Mamuya S, Mpembeni R, Jusabani A, Mugusi F (2016) Lung functions among patients with pulmonary tuberculosis in Dar es Salaam—a cross-sectional study. BMC Pulm Med 16(1):58
PubMed
PubMed Central
Google Scholar
Mbatchou Ngahane BH, Nouyep J, Nganda Motto M, Mapoure Njankouo Y, Wandji A, Endale M et al (2016) Post-tuberculous lung function impairment in a tuberculosis reference clinic in Cameroon. Respir Med 114:67–71
PubMed
Google Scholar
Ralph AP, Kenangalem E, Waramori G, Pontororing GJ, Sandjaja TE et al (2013) High morbidity during treatment and residual pulmonary disability in pulmonary tuberculosis: under-recognised phenomena. PLoS One 8(11):e80302
PubMed
PubMed Central
Google Scholar
Mugo PN, Mecha J, Muhwa C (2018) Pulmonary function and quality of life in patients with treated smear positive pulmonary tuberculosis at three tuberculosis clinics in Nairobi, Kenya. Eur Respir J. 52:Suppl. 62, PA2749.
Google Scholar
Corbeau P, Reynes J (2011) Immune reconstitution under antiretroviral therapy: the new challenge in HIV-1 infection. Blood 117(21):5582–5590
CAS
PubMed
Google Scholar
Wilson EM, Sereti I (2013) Immune restoration after antiretroviral therapy: the pitfalls of hasty or incomplete repairs. Immunol Rev 254(1):343–354
PubMed
PubMed Central
Google Scholar
Hunt PW, Lee SA, Siedner MJ (2016) Immunologic biomarkers, morbidity, and mortality in treated HIV infection. J Infect Dis 214(Suppl 2):S44–S50
CAS
PubMed
PubMed Central
Google Scholar
Nabatanzi R, Cose S, Joloba M, Jones SR, Nakanjako D (2018) Effects of HIV infection and ART on phenotype and function of circulating monocytes, natural killer, and innate lymphoid cells. AIDS Res Ther 15(1):7
PubMed
PubMed Central
Google Scholar
Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD (2012) Tuberculosis incidence rates during 8 years of follow-up of an antiretroviral treatment cohort in South Africa: comparison with rates in the community. PLoS One 7(3):e34156
CAS
PubMed
PubMed Central
Google Scholar