Skip to main content

Diagnosis of HIV-Associated Tuberculosis

  • Chapter
  • First Online:
HIV and Tuberculosis
  • 509 Accesses

  • 1 Citation

Abstract

Of the estimated 1.2 million tuberculosis (TB) cases among people living with HIV (PLHIV), less than half are diagnosed and reported to health authorities. This is a key reason why TB remains the leading cause of death among PLHIV. Systematic screening approaches coupled with improved diagnostics are critical to reducing the gap and have begun to emerge over recent years. This chapter reviews current approaches to screening for and diagnosing HIV-associated TB, including drug-resistant TB, in adults. The chapter is organized into three parts: Part I provides an overview of World Health Organization (WHO)-recommended tools to facilitate TB screening and diagnosis among PLHIV, Part II provides a selective overview of tools and tests currently in the later stages of the TB diagnostic pipeline and Part III provides a clinically-oriented, step-wise approach for diagnosing TB in PLHIV in resource-limited settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 99.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta RK, Lucas SB, Fielding KL, Lawn SD (2015) Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS 29:1987–2002

    PubMed  PubMed Central  Google Scholar 

  2. Gupta-Wright A, Peters JA, Flach C, Lawn SD (2016) Detection of lipoarabinomannan (LAM) in urine is an independent predictor of mortality risk in patients receiving treatment for HIV-associated tuberculosis in sub-Saharan Africa: a systematic review and meta-analysis. BMC Med 14:53

    PubMed  PubMed Central  Google Scholar 

  3. Lawn SD (2012) Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis 12:103

    PubMed  PubMed Central  Google Scholar 

  4. World Health Organization (ed) (2017) Tuberculosis-diagnostics technology landscape, 5th edn. World Health Organization, Geneva

    Google Scholar 

  5. World Health Organization (2014) High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. World Health Organization, Geneva

    Google Scholar 

  6. World Health Organization (2014) Guidelines for intensified tuberculosis case-finding and isoniazid preventative therapy for people living with HIV in resource-constrained settings. World Health Organization, Geneva

    Google Scholar 

  7. World Health Organization (2016) Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. World Health Organization, Geneva

    Google Scholar 

  8. Hamada Y, Lujan J, Schenkel K, Ford N, Getahun H (2018) Sensitivity and specificity of WHO’s recommended four-symptom screening rule for tuberculosis in people living with HIV: a systematic review and meta-analysis. Lancet HIV 5:e515–e523

    PubMed  Google Scholar 

  9. Lawn SD, Wood R (2011) Tuberculosis in antiretroviral treatment services in resource-limited settings: addressing the challenges of screening and diagnosis. J Infect Dis 204(Suppl 4):S1159–S1167

    PubMed  PubMed Central  Google Scholar 

  10. Heller T, Goblirsch S, Bahlas S et al (2013) Diagnostic value of FASH ultrasound and chest X-ray in HIV-co-infected patients with abdominal tuberculosis [Notes from the field]. Int J Tuberc Lung Dis 17:342–344

    CAS  PubMed  Google Scholar 

  11. Dawson R, Masuka P, Edwards DJ et al (2010) Chest radiograph reading and recording system: evaluation for tuberculosis screening in patients with advanced HIV. Int J Tuberc Lung Dis 14:52–58

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Davis JL, Worodria W, Kisembo H et al (2010) Clinical and radiographic factors do not accurately diagnose smear-negative tuberculosis in HIV-infected inpatients in Uganda: a cross-sectional study. PLoS One 5:e9859–e9858

    PubMed  PubMed Central  Google Scholar 

  13. Cain KP, McCarthy KD, Heilig CM et al (2010) An algorithm for tuberculosis screening and diagnosis in people with HIV. N Engl J Med 362:707–716

    CAS  PubMed  Google Scholar 

  14. World Health Organization (2016) Chest radiography in tuberculosis detection—summary of current WHO recommendations and guidance on programmatic approaches. World Health Organization, Geneva

    Google Scholar 

  15. Pande T, Cohen C, Pai M, Ahmad Khan F (2016) Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: a systematic review. Int J Tuberc Lung Dis 20:1226–1230

    CAS  PubMed  Google Scholar 

  16. Muyoyeta M, Maduskar P, Moyo M et al (2014) The sensitivity and specificity of using a computer aided diagnosis program for automatically scoring chest X-rays of presumptive TB patients compared with Xpert MTB/RIF in Lusaka Zambia. PLoS One 9:e93757–e93759

    PubMed  PubMed Central  Google Scholar 

  17. Heller T, Wallrauch C, Goblirsch S, Brunetti E (2012) Focused assessment with sonography for HIV-associated tuberculosis (FASH): a short protocol and a pictorial review. Crit Ultrasound J 4:21–29

    PubMed  PubMed Central  Google Scholar 

  18. Spalgais S, Jaiswal A, Puri M, Sarin R, Agarwal U (2013) Clinical profile and diagnosis of extrapulmonary tb in HIV infected patients: routine abdominal ultrasonography increases detection of abdominal tuberculosis. Indian J Rheumatol 60:147–153

    Google Scholar 

  19. Patel MN, Beningfield S, Burch V (2011) Abdominal and pericardial ultrasound in suspected extrapulmonary or disseminated tuberculosis. S Afr Med J 101:39–42

    PubMed  Google Scholar 

  20. World Health Organization (2011) Fluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis. World Health Organization, Geneva

    Google Scholar 

  21. Getahun H, Harrington M, O'Brien R, Nunn P (2007) Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. Lancet 369:2042–2049

    PubMed  Google Scholar 

  22. Chakravorty S, Sen MK, Tyagi JS (2005) Diagnosis of extrapulmonary tuberculosis by smear, culture, and PCR using universal sample processing technology. J Clin Microbiol 43:4357–4362

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee JY (2015) Diagnosis and treatment of extrapulmonary tuberculosis. Tuberc Respir Dis 78:47–55

    Google Scholar 

  24. Lawn SD, Nicol MP (2011) Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol 6:1067–1082

    PubMed  PubMed Central  Google Scholar 

  25. Hanrahan CF, Theron G, Bassett J et al (2014) Xpert MTB/RIF as a measure of sputum bacillary Burden. Variation by HIV status and immunosuppression. Am J Respir Crit Care Med 189:1426–1434

    PubMed  PubMed Central  Google Scholar 

  26. Beynon F, Theron G, Respeito D et al (2018) Correlation of Xpert MTB/RIF with measures to assess Mycobacterium tuberculosis bacillary burden in high HIV burden areas of Southern Africa. Sci Rep 8:5201

    PubMed  PubMed Central  Google Scholar 

  27. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N (2014) Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev (1):CD009593

    Google Scholar 

  28. Kohli M, Schiller I, Dendukuri N et al (2018) Xpert®MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst Rev 124:1382–1247

    Google Scholar 

  29. Lawn SD, Kerkhoff AD, Burton R et al (2015) Rapid microbiological screening for tuberculosis in HIV-positive patients on the first day of acute hospital admission by systematic testing of urine samples using Xpert MTB/RIF: a prospective cohort in South Africa. BMC Med 13:192

    PubMed  PubMed Central  Google Scholar 

  30. Peter JG, Theron G, Muchinga TE, Govender U, Dheda K (2012) The diagnostic accuracy of urine-based Xpert MTB/RIF in HIV-infected hospitalized patients who are smear-negative or sputum scarce. PLoS One 7:e39966–e39968

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lawn SD, Kerkhoff AD, Vogt M, Wood R (2012) High diagnostic yield of tuberculosis from screening urine samples from HIV-infected patients with advanced immunodeficiency using the Xpert MTB/RIF assay. J Acquir Immune Defic Syndr 60:289–294

    PubMed  PubMed Central  Google Scholar 

  32. Albert H, Nathavitharana RR, Isaacs C, Pai M, Denkinger CM, Boehme CC (2016) Development, roll-out and impact of Xpert MTB/RIF for tuberculosis: what lessons have we learnt and how can we do better? Eur Respir J 48:516–525

    PubMed  PubMed Central  Google Scholar 

  33. Ngwira LG, Corbett EL, Khundi M et al (2018) Screening for tuberculosis with Xpert MTB/RIF versus fluorescent microscopy among adults newly diagnosed with HIV in rural Malawi: a cluster randomized trial (CHEPETSA). Clin Infect Dis 363:1005

    Google Scholar 

  34. Trajman A, Durovni B, Saraceni V et al (2015) Impact on patients’ treatment outcomes of XpertMTB/RIF implementation for the diagnosis of tuberculosis: follow-up of a stepped-wedge randomized clinical trial. PLoS One 10:e0123252–e0123211

    PubMed  PubMed Central  Google Scholar 

  35. Auld AF, Fielding KL, Gupta-Wright A, Lawn SD (2016) Xpert MTB/RIF—why the lack of morbidity and mortality impact in intervention trials? Trans R Soc Trop Med Hyg 110:432–444

    PubMed  Google Scholar 

  36. Theron G, Zijenah L, Chanda D et al (2014) Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383:424–435

    CAS  PubMed  Google Scholar 

  37. Churchyard GJ, Stevens WS, Mametja LD et al (2015) Xpert MTB/RIF versus sputum microscopy as the initialdiagnostic test for tuberculosis: a cluster-randomised trialembedded in South African roll-out of Xpert MTB/RIF. Lancet Glob Health 3:e450–e457

    PubMed  Google Scholar 

  38. Cox HS, Mbhele S, Mohess N et al (2014) Impact of Xpert MTB/RIF for TB diagnosis in a primary care clinic with high TB and HIV prevalence in South Africa: a pragmatic randomised trial. PLoS Med 11:e1001760–e1001712

    PubMed  PubMed Central  Google Scholar 

  39. Yoon C, Cattamanchi A, Davis JL et al (2012) Impact of Xpert MTB/RIF testing on tuberculosis management and outcomes in hospitalized patients in Uganda. PLoS One 7:e48599

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mupfumi L, Makamure B, Chirehwa M et al (2014) Impact of Xpert MTB/RIF on antiretroviral therapy-associated tuberculosis and mortality: a pragmatic randomized controlled trial. Open Forum Infect Dis 1:1897–1898

    Google Scholar 

  41. Calligaro GL, Theron G, Khalfey H et al (2015) Burden of tuberculosis in intensive care units in Cape Town, South Africa, and assessment of the accuracy and effect on patient outcomes of the Xpert MTB/RIF test on tracheal aspirate samples for diagnosis of pulmonary tuberculosis: a prospective burden of disease study with a nested randomised controlled trial. Lancet Respir Med 3:621–630

    PubMed  Google Scholar 

  42. van Kampen SC, Susanto NH, Simon S et al (2015) Effects of introducing Xpert MTB/RIF on diagnosis and treatment of drug-resistant tuberculosis patients in Indonesia: a pre-post intervention study. PLoS One 10:e0123536–e0123511

    PubMed  PubMed Central  Google Scholar 

  43. Chakravorty S, Simmons AM, Rowneki M et al (2017) The new Xpert MTB/RIF ultra: improving detection of mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio 8:e00812–e00817

    PubMed  PubMed Central  Google Scholar 

  44. Dorman SE, Schumacher SG, Alland D et al (2018) Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis 18:76–84

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bahr NC, Nuwagira E, Evans EE et al (2018) Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: a prospective cohort study. Lancet Infect Dis 18:68–75

    PubMed  PubMed Central  Google Scholar 

  46. World Health Organization (2017) WHO meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTB/RIF ultra compared to Xpert MTB/RIF. World Health Organization, Geneva

    Google Scholar 

  47. Shah M, Hanrahan C, Wang ZY et al (2016) Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV-positive adults. Cochrane Database Syst Rev (5):CD011420

    Google Scholar 

  48. Lawn SD, Kerkhoff AD, Burton R et al (2017) Diagnostic accuracy, incremental yield and prognostic value of determine TB-LAM for routine diagnostic testing for tuberculosis in HIV-infected patients requiring acute hospital admission in South Africa: a prospective cohort. BMC Med 15:67

    PubMed  PubMed Central  Google Scholar 

  49. Lawn SD, Kerkhoff AD, Vogt M, Wood R (2012) Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: a descriptive study. Lancet Infect Dis 12:201–209

    PubMed  PubMed Central  Google Scholar 

  50. Lawn SD, Kerkhoff AD, Vogt M, Wood R (2013) HIV-associated tuberculosis: relationship between disease severity and the sensitivity of new sputum-based and urine-based diagnostic assays. BMC Med 11:231

    PubMed  PubMed Central  Google Scholar 

  51. Kerkhoff AD, Barr DA, Burton R et al (2017) Disseminated tuberculosis among hospitalised HIV patients in South Africa: a common condition that can be rapidly diagnosed using urine-based assays. Sci Rep 7:10931

    PubMed  PubMed Central  Google Scholar 

  52. Peter JG, Zijenah LS, Chanda D et al (2016) Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet 387:1187–1197

    PubMed  Google Scholar 

  53. Gupta-Wright A, Corbett EL, van Oosterhout JJ et al (2018) Rapid urine-based screening for tuberculosis in HIV-positive patients admitted to hospital in Africa (STAMP): a pragmatic, multicentre, parallel-group, double-blind, randomised controlled trial. Lancet 392:292–301

    PubMed  PubMed Central  Google Scholar 

  54. World Health Organization (2015) The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV. World Health Organization, Geneva

    Google Scholar 

  55. World Health Organization (2016) The use of loop-mediated isothermal ampli cation (TB-LAMP) for the diagnosis of pulmonary tuberculosis. Policy guidance. World Health Organization, Geneva

    Google Scholar 

  56. World Health Organization (2015) The end TB strategy. World Health Organization, Geneva

    Google Scholar 

  57. Angeby K, Jureen P, Kahlmeter G, Hoffner SE, Schön T (2012) Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World Health Organ 90:693–698

    PubMed  PubMed Central  Google Scholar 

  58. Xie YL, Chakravorty S, Armstrong DT et al (2017) Evaluation of a rapid molecular drug-susceptibility test for tuberculosis. N Engl J Med 377:1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rigouts L, Gumusboga M, de Rijk WB et al (2013) Rifampin resistance missed in automated liquid culture system for Mycobacterium tuberculosis isolates with specific rpoB mutations. J Clin Microbiol 51:2641–2645

    CAS  PubMed  PubMed Central  Google Scholar 

  60. World Health Organization (2016) The use of molecular line probe assays for the detection of resistance to isoniazid and rifampicin. World Health Organization, Geneva

    Google Scholar 

  61. World Health Organization (2016) The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. Policy guidance. World Health Organization, Geneva

    Google Scholar 

  62. World Health Organization (2018) Critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. World Health Organization, Geneva

    Google Scholar 

  63. World Health Organization (2008) Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB)—policy statement. World Health Organization, Geneva

    Google Scholar 

  64. Luetkemeyer AF, Charlebois ED, Flores LL et al (2007) Comparison of an interferon-gamma release assay with tuberculin skin testing in HIV-infected individuals. Am J Respir Crit Care Med 175:737–742

    PubMed  PubMed Central  Google Scholar 

  65. Gardee Y, Dreyer AW, Koornhof HJ et al (2017) Evaluation of the genotype MTBDRslVersion 2.0 assay for second-line drug resistance detection of Mycobacterium tuberculosis isolates in South Africa. J Clin Microbiol 55:791–800

    CAS  PubMed  PubMed Central  Google Scholar 

  66. DiNardo A, Saavedra B, Silva DR et al (2018) Point of care diagnostics for tuberculosis. Rev Port Pneumol 24:73–85

    Google Scholar 

  67. Balcha TT, Skogmar S, Sturegård E et al (2014) A clinical scoring algorithm for determination of the risk of tuberculosis in HIV-infected adults: a cohort study performed at Ethiopian Health Centers. Open Forum Infect Dis 1:1906–1909

    Google Scholar 

  68. Hanifa Y, Fielding KL, Chihota VN et al (2017) A clinical scoring system to prioritise investigation for tuberculosis among adults attending HIV clinics in South Africa. PLoS One 12:e0181519–e0181520

    PubMed  PubMed Central  Google Scholar 

  69. Yoon C, Semitala FC, Atuhumuza E et al (2017) Point-of-care C-reactive protein-based tuberculosis screening for people living with HIV: a diagnostic accuracy study. Lancet Infect Dis 17:1285–1292

    PubMed  PubMed Central  Google Scholar 

  70. Yoon C, Chaisson LH, Patel SM et al (2017) Diagnostic accuracy of C-reactive protein for active pulmonary tuberculosis: a meta-analysis. Int J Tuberc Lung Dis 21:1013–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shapiro AE, Hong T, Govere S et al (2018) C-reactive protein as a screening test for HIV-associated pulmonary tuberculosis prior to antiretroviral therapy in South Africa. AIDS 32:1811–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoon C, Semitala FC, Asege L et al (2019) Yield and efficiency of novel intensified tuberculosis case-finding algorithms for people living with HIV. Am J Respir Crit Care Med 199(5):643–650

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Broger T, Sossen B, Toit du E et al (2019) Novel lipoarabinomannan point-of-care tuberculosis test for people living with HIV with superior sensitivity: a diagnostic accuracy study. Lancet Infect Dis 19(8):852–861

    PubMed  PubMed Central  Google Scholar 

  74. Médecins Sans Frontières MSF (2018) Xpert Omni Factsheet. MSF, Geneva

    Google Scholar 

  75. Pankhurst LJ, del Ojo Elias C, Votintseva AA et al (2016) Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 4:49–58

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Votintseva AA, Bradley P, Pankhurst L et al (2017) Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol 55:1285–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Doughty EL, Sergeant MJ, Adetifa I, Antonio M, Pallen MJ (2014) Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanumin sputum samples using shotgun metagenomics on a benchtop sequencer. PeerJ 2:e585–e518

    PubMed  PubMed Central  Google Scholar 

  78. Brown AC, Bryant JM, Einer-Jensen K et al (2015) Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 53:2230–2237

    CAS  PubMed  PubMed Central  Google Scholar 

  79. World Health Organization (2018) GLI model TB diagnostic algorithms. World Health Organization, Geneva

    Google Scholar 

  80. Ho J, Fox GJ, Marais BJ (2016) Passive case finding for tuberculosis is not enough. Int J Mycobacteriol 5:374–378

    PubMed  Google Scholar 

  81. Lawn SD, Brooks SV, Kranzer K et al (2011) Screening for HIV-associated tuberculosis and rifampicin resistance before antiretroviral therapy using the Xpert MTB/RIF assay: a prospective study. PLoS Med 8:e1001067

    PubMed  PubMed Central  Google Scholar 

  82. World Health Organization (2011) Same-day diagnosis of tuberculosis by microscopy: policy statement. World Health Organization, Geneva

    Google Scholar 

  83. Davis JL, Cattamanchi A, Cuevas LE, Hopewell PC, Steingart KR (2013) Diagnostic accuracy of same-day microscopy versus standard microscopy for pulmonary tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis 13:147–154

    PubMed  Google Scholar 

  84. Cattamanchi A, Dowdy DW, Davis JL et al (2009) Sensitivity of direct versus concentrated sputum smear microscopy in HIV-infected patients suspected of having pulmonary tuberculosis. BMC Infect Dis 9:240–249

    Google Scholar 

  85. World Health Organization (2007) Improving the diagnosis and treatment of smear-negative pulmonary and extrapulmonary tuberculosis among adults and adolescents. World Health Organization, Geneva

    Google Scholar 

  86. Hosseinipour MC, Bisson GP, Miyahara S et al (2016) Empirical tuberculosis therapy versus isoniazid in adult outpatients with advanced HIV initiating antiretroviral therapy (REMEMBER): a multicountry open-label randomised controlled trial. Lancet 387:1198–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Katagira W, Walter ND, Boon den S et al (2016) Empiric TB treatment of severely ill patients with HIV and presumed pulmonary TB improves survival. J Acquir Immune Defic Syndr 72:297–303

    PubMed  PubMed Central  Google Scholar 

  88. Holz TH, Kabera G, Mthiyane T et al (2011) Use of a WHO-recommended algorithm to reduce mortality in seriously ill patients with HIV infection and smear-negative pulmonary tuberculosis in South Africa: an observational cohort study. Lancet Infect Dis 11:533–540

    Google Scholar 

  89. Griesel R, Stewart A, van der Plas H et al (2017) Optimizing tuberculosis diagnosis in human immunodeficiency virus-infected inpatients meeting the criteria of seriously Ill in the World Health Organization algorithm. Clin Infect Dis 66:1419–1426

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Kerkhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerkhoff, A.D., Cattamanchi, A. (2019). Diagnosis of HIV-Associated Tuberculosis. In: Sereti, I., Bisson, G.P., Meintjes, G. (eds) HIV and Tuberculosis. Springer, Cham. https://doi.org/10.1007/978-3-030-29108-2_7

Download citation

Publish with us

Policies and ethics