Young DB, Gideon HP, Wilkinson RJ (2009) Eliminating latent tuberculosis. Trends Microbiol 17(5):183–188
CAS
PubMed
Google Scholar
Stead WW (1995) Management of health care workers after inadvertent exposure to tuberculosis: a guide for the use of preventive therapy. Ann Intern Med 122(12):906–912
CAS
PubMed
Google Scholar
Joshi R, Reingold AL, Menzies D, Pai M (2006) Tuberculosis among health-care workers in low- and middle-income countries: a systematic review. PLoS Med 3(12):e494
PubMed
PubMed Central
Google Scholar
Morrison J, Pai M, Hopewell PC (2008) Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis 8(6):359–368
PubMed
Google Scholar
Stein CM, Nsereko M, Malone LL, Okware B, Kisingo H, Nalukwago S et al (2018) Long-term stability of resistance to latent M. tuberculosis infection in highly exposed TB household contacts in Kampala, Uganda. Clin Infect Dis
Google Scholar
Santin M, Munoz L, Rigau D (2012) Interferon-gamma release assays for the diagnosis of tuberculosis and tuberculosis infection in HIV-infected adults: a systematic review and meta-analysis. PLoS One 7(3):e32482
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Zhang R, Wang J, Liu L, Zheng Y, Shen Y et al (2011) Interferon-gamma release assays for the diagnosis of active tuberculosis in HIV-infected patients: a systematic review and meta-analysis. PLoS One 6(11):e26827
CAS
PubMed
PubMed Central
Google Scholar
Metcalfe JZ, Everett CK, Steingart KR, Cattamanchi A, Huang L, Hopewell PC et al (2011) Interferon-gamma release assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: systematic review and meta-analysis. J Infect Dis 204(Suppl 4):S1120–S1129
PubMed
PubMed Central
Google Scholar
Cattamanchi A, Smith R, Steingart KR, Metcalfe JZ, Date A, Coleman C et al (2011) Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr 56(3):230–238
CAS
PubMed
PubMed Central
Google Scholar
Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N et al (2007) Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117(7):1988–1994
CAS
PubMed
PubMed Central
Google Scholar
Clay H, Volkman HE, Ramakrishnan L (2008) Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29(2):283–294
CAS
PubMed
PubMed Central
Google Scholar
van Zyl-Smit RN, Pai M, Peprah K, Meldau R, Kieck J, Juritz J et al (2009) Within-subject variability and boosting of T-cell interferon-gamma responses after tuberculin skin testing. Am J Respir Crit Care Med 180(1):49–58
PubMed
Google Scholar
van Zyl-Smit RN, Zwerling A, Dheda K, Pai M (2009) Within-subject variability of interferon-g assay results for tuberculosis and boosting effect of tuberculin skin testing: a systematic review. PLoS One 4(12):e8517
PubMed
PubMed Central
Google Scholar
Pai M, Joshi R, Dogra S, Zwerling AA, Gajalakshmi D, Goswami K et al (2009) T-cell assay conversions and reversions among household contacts of tuberculosis patients in rural India. Int J Tuberc Lung Dis 13(1):84–92
CAS
PubMed
PubMed Central
Google Scholar
Wayne LG, Lin KY (1982) Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37(3):1042–1049
CAS
PubMed
PubMed Central
Google Scholar
Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR (2004) Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 279(22):23082–23087
CAS
PubMed
PubMed Central
Google Scholar
Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci U S A 98(13):7534–7539
CAS
PubMed
PubMed Central
Google Scholar
McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT et al (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406(6797):735–738
CAS
PubMed
Google Scholar
Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE, 3rd. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol 2007;189(7):2583–2589
Google Scholar
Rustad TR, Harrell MI, Liao R, Sherman DR (2008) The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3(1):e1502
PubMed
PubMed Central
Google Scholar
Chao MC, Rubin EJ (2010) Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64:293–311
CAS
PubMed
Google Scholar
Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C et al (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77(10):4631–4642
CAS
PubMed
PubMed Central
Google Scholar
Mtei L, Matee M, Herfort O, Bakari M, Horsburgh CR, Waddell R et al (2005) High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. Clin Infect Dis 40(10):1500–1507
PubMed
Google Scholar
Sterling TR, Pham PA, Chaisson RE (2010) HIV infection-related tuberculosis: clinical manifestations and treatment. Clin Infect Dis 50(Suppl 3):S223–S230
CAS
PubMed
Google Scholar
Meintjes G, Lawn SD, Scano F, Maartens G, French MA, Worodria W et al (2008) Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis 8(8):516–523
PubMed
PubMed Central
Google Scholar
World Health Organization. Guidelines on the management of latent tuberculosis infection. 2015
Google Scholar
World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for programmatic management 2018
Google Scholar
American Thoracic Society (2000) Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Recomm Rep 49(RR-6):1–51
Google Scholar
Centers for Disease Control and Prevention (2011) Recommendations for use of an isoniazid-rifapentine regimen with direct observation to treat latent Mycobacterium tuberculosis infection. MMWR Morb Mortal Wkly Rep 60(48):1650–1653
Google Scholar
Borisov AS, Bamrah Morris S, Njie GJ, Winston CA, Burton D, Goldberg S et al (2018) Update of recommendations for use of once-weekly isoniazid-rifapentine regimen to treat latent Mycobacterium tuberculosis infection. MMWR Morb Mortal Wkly Rep 67(25):723–726
PubMed
PubMed Central
Google Scholar
Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America Available at http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf. Accessed April 8, 2019
Ferebee SH (1970) Controlled chemoprophylaxis trials in tuberculosis. A general review. Bibl Tuberc 26:28–106
CAS
PubMed
Google Scholar
International Union Against Tuberculosis Committee on Prophylaxis (1982) Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial. Bull World Health Organ 60(4):555–564
PubMed Central
Google Scholar
Ferebee SH, Mount FW (1962) Tuberculosis morbidity in a controlled trial of the prophylactic use of isoniazid among household contacts. Am Rev Respir Dis 85:490–510
CAS
PubMed
Google Scholar
Bucher HC, Griffith LE, Guyatt GH, Sudre P, Naef M, Sendi P et al (1999) Isoniazid prophylaxis for tuberculosis in HIV infection: a meta-analysis of randomized controlled trials. AIDS 13(4):501–507
CAS
PubMed
Google Scholar
Akolo C, Adetifa I, Shepperd S, Volmink J (2010) Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev 1:CD000171
Google Scholar
Zenner D, Beer N, Harris RJ, Lipman MC, Stagg HR, van der Werf MJ (2017) Treatment of latent tuberculosis infection: an updated network meta-analysis. Ann Intern Med 167(4):248–255
PubMed
Google Scholar
Snider DE Jr, Caras GJ, Koplan JP (1986) Preventive therapy with isoniazid. Cost-effectiveness of different durations of therapy. JAMA 255(12):1579–1583
PubMed
Google Scholar
Comstock GW, Baum C, Snider DE Jr (1979) Isoniazid prophylaxis among Alaskan Eskimos: a final report of the bethel isoniazid studies. Am Rev Respir Dis 119(5):827–830
CAS
PubMed
Google Scholar
Comstock GW, Ferebee SH (1967) Hammes LM. A controlled trial of community-wide isoniazid prophylaxis in Alaska. Am Rev Respir Dis 95(6):935–943
CAS
PubMed
Google Scholar
Comstock GW (1999) How much isoniazid is needed for prevention of tuberculosis among immunocompetent adults? Int J Tuberc Lung Dis 3(10):847–850
CAS
PubMed
Google Scholar
World Healt Organization. Recommendation on 36 months isoniazid preventive therapy to adult and adolescents living with HIV in resource-constrained and high TB- and HIV-prevalence settings. 2015
Google Scholar
Den Boon S, Matteelli A, Ford N, Getahun H (2016) Continuous isoniazid for the treatment of latent tuberculosis infection in people living with HIV. AIDS 30(5):797–801
Google Scholar
Samandari T, Agizew TB, Nyirenda S, Tedla Z, Sibanda T, Shang N et al (2011) 6-month versus 36-month isoniazid preventive treatment for tuberculosis in adults with HIV infection in Botswana: a randomised, double-blind, placebo-controlled trial. Lancet 377(9777):1588–1598
CAS
PubMed
Google Scholar
Swaminathan S, Menon PA, Gopalan N, Perumal V, Santhanakrishnan RK, Ramachandran R et al (2012) Efficacy of a six-month versus a 36-month regimen for prevention of tuberculosis in HIV-infected persons in India: a randomized clinical trial. PLoS One 7(12):e47400
CAS
PubMed
PubMed Central
Google Scholar
Martinson NA, Barnes GL, Moulton LH, Msandiwa R, Hausler H, Ram M et al (2011) New regimens to prevent tuberculosis in adults with HIV infection. N Engl J Med 365(1):11–20
CAS
PubMed
PubMed Central
Google Scholar
Pho MT, Swaminathan S, Kumarasamy N, Losina E, Ponnuraja C, Uhler LM et al (2012) The cost-effectiveness of tuberculosis preventive therapy for HIV-infected individuals in southern India: a trial-based analysis. PLoS One 7(4):e36001
CAS
PubMed
PubMed Central
Google Scholar
Gupta S, Abimbola T, Date A, Suthar AB, Bennett R, Sangrujee N et al (2014) Cost-effectiveness of the Three I's for HIV/TB and ART to prevent TB among people living with HIV. Int J Tuberc Lung Dis 18(10):1159–1165
CAS
PubMed
PubMed Central
Google Scholar
Smith T, Samandari T, Abimbola T, Marston B, Sangrujee N (2015) Implementation and operational research: cost-effectiveness of antiretroviral therapy and isoniazid prophylaxis to reduce tuberculosis and death in people living With HIV in Botswana. J Acquir Immune Defic Syndr 70(3):e84–e93
CAS
PubMed
PubMed Central
Google Scholar
World Health Organization (2009) Treatment of tuberculosis guidelines. In: 4th ed.
Google Scholar
Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A et al (2016) Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis 63(7):e147–ee95
PubMed
PubMed Central
Google Scholar
Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents living with HIV. Department of Health and Human Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed April 8, 2019
Cohen K, van Cutsem G, Boulle A, McIlleron H, Goemaere E, Smith PJ et al (2008) Effect of rifampicin-based antitubercular therapy on nevirapine plasma concentrations in South African adults with HIV-associated tuberculosis. J Antimicrob Chemother 61(2):389–393
CAS
PubMed
Google Scholar
van Oosterhout JJ, Kumwenda JJ, Beadsworth M, Mateyu G, Longwe T, Burger DM et al (2007) Nevirapine-based antiretroviral therapy started early in the course of tuberculosis treatment in adult Malawians. Antivir Ther 12(4):515–521
PubMed
Google Scholar
Boulle A, Van Cutsem G, Cohen K, Hilderbrand K, Mathee S, Abrahams M et al (2008) Outcomes of nevirapine- and efavirenz-based antiretroviral therapy when coadministered with rifampicin-based antitubercular therapy. JAMA 300(5):530–539
CAS
PubMed
Google Scholar
Avihingsanon A, Manosuthi W, Kantipong P, Chuchotaworn C, Moolphate S, Sakornjun W et al (2008) Pharmacokinetics and 48-week efficacy of nevirapine: 400 mg versus 600 mg per day in HIV-tuberculosis coinfection receiving rifampicin. Antivir Ther 13(4):529–536
CAS
PubMed
Google Scholar
Swaminathan S, Padmapriyadarsini C, Venkatesan P, Narendran G, Ramesh Kumar S, Iliayas S et al (2011) Efficacy and safety of once-daily nevirapine- or efavirenz-based antiretroviral therapy in HIV-associated tuberculosis: a randomized clinical trial. Clin Infect Dis 53(7):716–724
CAS
PubMed
Google Scholar
Bonnet M, Bhatt N, Baudin E, Silva C, Michon C, Taburet AM et al (2013) Nevirapine versus efavirenz for patients co-infected with HIV and tuberculosis: a randomised non-inferiority trial. Lancet Infect Dis 13(4):303–312
CAS
PubMed
Google Scholar
Grinsztejn B, De Castro N, Arnold V, Veloso VG, Morgado M, Pilotto JH et al (2014) Raltegravir for the treatment of patients co-infected with HIV and tuberculosis (ANRS 12 180 Reflate TB): a multicentre, phase 2, non-comparative, open-label, randomised trial. Lancet Infect Dis 14(6):459–467
CAS
PubMed
Google Scholar
Taburet AM, Sauvageon H, Grinsztejn B, Assuied A, Veloso V, Pilotto JH et al (2015) Pharmacokinetics of raltegravir in HIV-infected patients on rifampicin-based antitubercular therapy. Clin Infect Dis 61(8):1328–1335
CAS
PubMed
Google Scholar
Wenning LA, Hanley WD, Brainard DM, Petry AS, Ghosh K, Jin B et al (2009) Effect of rifampin, a potent inducer of drug-metabolizing enzymes, on the pharmacokinetics of raltegravir. Antimicrob Agents Chemother 53(7):2852–2856
CAS
PubMed
PubMed Central
Google Scholar
Dooley KE, Sayre P, Borland J, Purdy E, Chen S, Song I et al (2013) Safety, tolerability, and pharmacokinetics of the HIV integrase inhibitor dolutegravir given twice daily with rifampin or once daily with rifabutin: results of a phase 1 study among healthy subjects. J Acquir Immune Defic Syndr 62(1):21–27
CAS
PubMed
Google Scholar
Dooley KE, Kaplan R, Mwelase N, Grinsztejn B, Ticona E, Lacerda M et al (2019) Dolutegravir-based antiretroviral therapy for patients co-infected with tuberculosis and HIV: a multicenter, noncomparative, open-label, randomized trial. In: Clin Infect Dis
Google Scholar
Loeliger A, Suthar AB, Ripin D, Glaziou P, O'Brien M, Renaud-Thery F et al (2012) Protease inhibitor-containing antiretroviral treatment and tuberculosis: can rifabutin fill the breach? Int J Tuberc Lung Dis 16(1):6–15
CAS
PubMed
Google Scholar
Matteelli A, Olliaro P, Signorini L, Cadeo G, Scalzini A, Bonazzi L et al (1999) Tolerability of twice-weekly rifabutin-isoniazid combinations versus daily isoniazid for latent tuberculosis in HIV-infected subjects: a pilot study. Int J Tuberc Lung Dis 3(11):1043–1046
CAS
PubMed
Google Scholar
Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E et al (2011) Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med 365(23):2155–2166
CAS
PubMed
Google Scholar
Podany AT, Bao Y, Swindells S, Chaisson RE, Andersen JW, Mwelase T et al (2015) Efavirenz pharmacokinetics and pharmacodynamics in HIV-infected persons receiving rifapentine and isoniazid for tuberculosis prevention. Clin Infect Dis 61(8):1322–1327
CAS
PubMed
PubMed Central
Google Scholar
Weiner M, Egelund EF, Engle M, Kiser M, Prihoda TJ, Gelfond JA et al (2014) Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother 69(4):1079–1085
CAS
PubMed
Google Scholar
Belknap R, Holland D, Feng PJ, Millet JP, Cayla JA, Martinson NA et al (2017) Self-administered versus directly observed once-weekly isoniazid and rifapentine treatment of latent tuberculosis infection: a randomized trial. Ann Intern Med 167(10):689–697
PubMed
PubMed Central
Google Scholar
Johnson KT, Churchyard GJ, Sohn H, Dowdy DW (2018) Cost-effectiveness of preventive therapy for tuberculosis with isoniazid and rifapentine versus isoniazid alone in high-burden settings. Clin Infect Dis 67(7):1072–1078
PubMed
Google Scholar
Shepardson D, Marks SM, Chesson H, Kerrigan A, Holland DP, Scott N et al (2013) Cost-effectiveness of a 12-dose regimen for treating latent tuberculous infection in the United States. Int J Tuberc Lung Dis 17(12):1531–1537
CAS
PubMed
PubMed Central
Google Scholar
Shepardson D, MacKenzie WR (2014) Update on cost-effectiveness of a 12-dose regimen for latent tuberculous infection at new rifapentine prices. Int J Tuberc Lung Dis 18(6):751
PubMed
Google Scholar
Swindells S, Rramchandani R, Gupta A, Benson CA, Leon-Cruz JT, Mwelase N et al (2019) One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N Engl J Med 380(11):1001–1011
CAS
PubMed
PubMed Central
Google Scholar
Organization WH. Report of the WHO Expert Committee, 2015 (including the 19th WHO Model List of Essential Medicines and the 5th WHO Model List of Essential Medicines for Children)
Google Scholar
Suthar AB, Lawn SD, del Amo J, Getahun H, Dye C, Sculier D et al (2012) Antiretroviral therapy for prevention of tuberculosis in adults with HIV: a systematic review and meta-analysis. PLoS Med 9(7):e1001270
CAS
PubMed
PubMed Central
Google Scholar
TEMPRANO ANRS 12136 Study Group (2015) Danel C, Moh R, Gabillard D, Badje A, Le Carrou J, et al. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N Engl J Med 373(9):808–822
Google Scholar
Badje A, Moh R, Gabillard D, Guehi C, Kabran M, Ntakpe JB et al (2017) Effect of isoniazid preventive therapy on risk of death in west African, HIV-infected adults with high CD4 cell counts: long-term follow-up of the Temprano ANRS 12136 trial. Lancet Glob Health 5(11):e1080–e10e9
PubMed
Google Scholar