Skip to main content

Recent Advances in the Treatment of Latent Tuberculosis Infection Among Adults Living with HIV Infection

  • Chapter
  • First Online:
HIV and Tuberculosis

Abstract

In this chapter, we review evidence supporting the tuberculosis (TB) disease spectrum, rather than dichotomous categories of latent M. tuberculosis infection (LTBI) and active disease, as TB pathophysiology is important when considering TB prevention and treatment. We also describe the impact of immunocompromising conditions, specifically human immunodeficiency virus (HIV) infection, along the TB disease spectrum. We review the indications for treatment of LTBI among people living with HIV (PLWH) and the evidence behind the LTBI treatment regimens currently recommended by the World Health Organization and the United States Centers for Disease Control and Prevention. Lastly, we discuss the importance of antiretroviral therapy (ART) in addition to anti-mycobacterial therapy for the prevention of TB among PLWH, as well as the drug-drug interactions with concomitant antiretroviral therapy and LTBI treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 99.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Young DB, Gideon HP, Wilkinson RJ (2009) Eliminating latent tuberculosis. Trends Microbiol 17(5):183–188

    CAS  PubMed  Google Scholar 

  2. Stead WW (1995) Management of health care workers after inadvertent exposure to tuberculosis: a guide for the use of preventive therapy. Ann Intern Med 122(12):906–912

    CAS  PubMed  Google Scholar 

  3. Joshi R, Reingold AL, Menzies D, Pai M (2006) Tuberculosis among health-care workers in low- and middle-income countries: a systematic review. PLoS Med 3(12):e494

    PubMed  PubMed Central  Google Scholar 

  4. Morrison J, Pai M, Hopewell PC (2008) Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis 8(6):359–368

    PubMed  Google Scholar 

  5. Stein CM, Nsereko M, Malone LL, Okware B, Kisingo H, Nalukwago S et al (2018) Long-term stability of resistance to latent M. tuberculosis infection in highly exposed TB household contacts in Kampala, Uganda. Clin Infect Dis

    Google Scholar 

  6. Santin M, Munoz L, Rigau D (2012) Interferon-gamma release assays for the diagnosis of tuberculosis and tuberculosis infection in HIV-infected adults: a systematic review and meta-analysis. PLoS One 7(3):e32482

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J, Zhang R, Wang J, Liu L, Zheng Y, Shen Y et al (2011) Interferon-gamma release assays for the diagnosis of active tuberculosis in HIV-infected patients: a systematic review and meta-analysis. PLoS One 6(11):e26827

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Metcalfe JZ, Everett CK, Steingart KR, Cattamanchi A, Huang L, Hopewell PC et al (2011) Interferon-gamma release assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: systematic review and meta-analysis. J Infect Dis 204(Suppl 4):S1120–S1129

    PubMed  PubMed Central  Google Scholar 

  9. Cattamanchi A, Smith R, Steingart KR, Metcalfe JZ, Date A, Coleman C et al (2011) Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr 56(3):230–238

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N et al (2007) Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117(7):1988–1994

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Clay H, Volkman HE, Ramakrishnan L (2008) Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29(2):283–294

    CAS  PubMed  PubMed Central  Google Scholar 

  12. van Zyl-Smit RN, Pai M, Peprah K, Meldau R, Kieck J, Juritz J et al (2009) Within-subject variability and boosting of T-cell interferon-gamma responses after tuberculin skin testing. Am J Respir Crit Care Med 180(1):49–58

    PubMed  Google Scholar 

  13. van Zyl-Smit RN, Zwerling A, Dheda K, Pai M (2009) Within-subject variability of interferon-g assay results for tuberculosis and boosting effect of tuberculin skin testing: a systematic review. PLoS One 4(12):e8517

    PubMed  PubMed Central  Google Scholar 

  14. Pai M, Joshi R, Dogra S, Zwerling AA, Gajalakshmi D, Goswami K et al (2009) T-cell assay conversions and reversions among household contacts of tuberculosis patients in rural India. Int J Tuberc Lung Dis 13(1):84–92

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wayne LG, Lin KY (1982) Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37(3):1042–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR (2004) Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 279(22):23082–23087

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci U S A 98(13):7534–7539

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT et al (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406(6797):735–738

    CAS  PubMed  Google Scholar 

  19. Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE, 3rd. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol 2007;189(7):2583–2589

    Google Scholar 

  20. Rustad TR, Harrell MI, Liao R, Sherman DR (2008) The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3(1):e1502

    PubMed  PubMed Central  Google Scholar 

  21. Chao MC, Rubin EJ (2010) Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64:293–311

    CAS  PubMed  Google Scholar 

  22. Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C et al (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77(10):4631–4642

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mtei L, Matee M, Herfort O, Bakari M, Horsburgh CR, Waddell R et al (2005) High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. Clin Infect Dis 40(10):1500–1507

    PubMed  Google Scholar 

  24. Sterling TR, Pham PA, Chaisson RE (2010) HIV infection-related tuberculosis: clinical manifestations and treatment. Clin Infect Dis 50(Suppl 3):S223–S230

    CAS  PubMed  Google Scholar 

  25. Meintjes G, Lawn SD, Scano F, Maartens G, French MA, Worodria W et al (2008) Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis 8(8):516–523

    PubMed  PubMed Central  Google Scholar 

  26. World Health Organization. Guidelines on the management of latent tuberculosis infection. 2015

    Google Scholar 

  27. World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for programmatic management 2018

    Google Scholar 

  28. American Thoracic Society (2000) Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Recomm Rep 49(RR-6):1–51

    Google Scholar 

  29. Centers for Disease Control and Prevention (2011) Recommendations for use of an isoniazid-rifapentine regimen with direct observation to treat latent Mycobacterium tuberculosis infection. MMWR Morb Mortal Wkly Rep 60(48):1650–1653

    Google Scholar 

  30. Borisov AS, Bamrah Morris S, Njie GJ, Winston CA, Burton D, Goldberg S et al (2018) Update of recommendations for use of once-weekly isoniazid-rifapentine regimen to treat latent Mycobacterium tuberculosis infection. MMWR Morb Mortal Wkly Rep 67(25):723–726

    PubMed  PubMed Central  Google Scholar 

  31. Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America Available at http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf. Accessed April 8, 2019

  32. Ferebee SH (1970) Controlled chemoprophylaxis trials in tuberculosis. A general review. Bibl Tuberc 26:28–106

    CAS  PubMed  Google Scholar 

  33. International Union Against Tuberculosis Committee on Prophylaxis (1982) Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial. Bull World Health Organ 60(4):555–564

    PubMed Central  Google Scholar 

  34. Ferebee SH, Mount FW (1962) Tuberculosis morbidity in a controlled trial of the prophylactic use of isoniazid among household contacts. Am Rev Respir Dis 85:490–510

    CAS  PubMed  Google Scholar 

  35. Bucher HC, Griffith LE, Guyatt GH, Sudre P, Naef M, Sendi P et al (1999) Isoniazid prophylaxis for tuberculosis in HIV infection: a meta-analysis of randomized controlled trials. AIDS 13(4):501–507

    CAS  PubMed  Google Scholar 

  36. Akolo C, Adetifa I, Shepperd S, Volmink J (2010) Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev 1:CD000171

    Google Scholar 

  37. Zenner D, Beer N, Harris RJ, Lipman MC, Stagg HR, van der Werf MJ (2017) Treatment of latent tuberculosis infection: an updated network meta-analysis. Ann Intern Med 167(4):248–255

    PubMed  Google Scholar 

  38. Snider DE Jr, Caras GJ, Koplan JP (1986) Preventive therapy with isoniazid. Cost-effectiveness of different durations of therapy. JAMA 255(12):1579–1583

    PubMed  Google Scholar 

  39. Comstock GW, Baum C, Snider DE Jr (1979) Isoniazid prophylaxis among Alaskan Eskimos: a final report of the bethel isoniazid studies. Am Rev Respir Dis 119(5):827–830

    CAS  PubMed  Google Scholar 

  40. Comstock GW, Ferebee SH (1967) Hammes LM. A controlled trial of community-wide isoniazid prophylaxis in Alaska. Am Rev Respir Dis 95(6):935–943

    CAS  PubMed  Google Scholar 

  41. Comstock GW (1999) How much isoniazid is needed for prevention of tuberculosis among immunocompetent adults? Int J Tuberc Lung Dis 3(10):847–850

    CAS  PubMed  Google Scholar 

  42. World Healt Organization. Recommendation on 36 months isoniazid preventive therapy to adult and adolescents living with HIV in resource-constrained and high TB- and HIV-prevalence settings. 2015

    Google Scholar 

  43. Den Boon S, Matteelli A, Ford N, Getahun H (2016) Continuous isoniazid for the treatment of latent tuberculosis infection in people living with HIV. AIDS 30(5):797–801

    Google Scholar 

  44. Samandari T, Agizew TB, Nyirenda S, Tedla Z, Sibanda T, Shang N et al (2011) 6-month versus 36-month isoniazid preventive treatment for tuberculosis in adults with HIV infection in Botswana: a randomised, double-blind, placebo-controlled trial. Lancet 377(9777):1588–1598

    CAS  PubMed  Google Scholar 

  45. Swaminathan S, Menon PA, Gopalan N, Perumal V, Santhanakrishnan RK, Ramachandran R et al (2012) Efficacy of a six-month versus a 36-month regimen for prevention of tuberculosis in HIV-infected persons in India: a randomized clinical trial. PLoS One 7(12):e47400

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Martinson NA, Barnes GL, Moulton LH, Msandiwa R, Hausler H, Ram M et al (2011) New regimens to prevent tuberculosis in adults with HIV infection. N Engl J Med 365(1):11–20

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pho MT, Swaminathan S, Kumarasamy N, Losina E, Ponnuraja C, Uhler LM et al (2012) The cost-effectiveness of tuberculosis preventive therapy for HIV-infected individuals in southern India: a trial-based analysis. PLoS One 7(4):e36001

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gupta S, Abimbola T, Date A, Suthar AB, Bennett R, Sangrujee N et al (2014) Cost-effectiveness of the Three I's for HIV/TB and ART to prevent TB among people living with HIV. Int J Tuberc Lung Dis 18(10):1159–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith T, Samandari T, Abimbola T, Marston B, Sangrujee N (2015) Implementation and operational research: cost-effectiveness of antiretroviral therapy and isoniazid prophylaxis to reduce tuberculosis and death in people living With HIV in Botswana. J Acquir Immune Defic Syndr 70(3):e84–e93

    CAS  PubMed  PubMed Central  Google Scholar 

  50. World Health Organization (2009) Treatment of tuberculosis guidelines. In: 4th ed.

    Google Scholar 

  51. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A et al (2016) Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis 63(7):e147–ee95

    PubMed  PubMed Central  Google Scholar 

  52. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents living with HIV. Department of Health and Human Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed April 8, 2019

  53. Cohen K, van Cutsem G, Boulle A, McIlleron H, Goemaere E, Smith PJ et al (2008) Effect of rifampicin-based antitubercular therapy on nevirapine plasma concentrations in South African adults with HIV-associated tuberculosis. J Antimicrob Chemother 61(2):389–393

    CAS  PubMed  Google Scholar 

  54. van Oosterhout JJ, Kumwenda JJ, Beadsworth M, Mateyu G, Longwe T, Burger DM et al (2007) Nevirapine-based antiretroviral therapy started early in the course of tuberculosis treatment in adult Malawians. Antivir Ther 12(4):515–521

    PubMed  Google Scholar 

  55. Boulle A, Van Cutsem G, Cohen K, Hilderbrand K, Mathee S, Abrahams M et al (2008) Outcomes of nevirapine- and efavirenz-based antiretroviral therapy when coadministered with rifampicin-based antitubercular therapy. JAMA 300(5):530–539

    CAS  PubMed  Google Scholar 

  56. Avihingsanon A, Manosuthi W, Kantipong P, Chuchotaworn C, Moolphate S, Sakornjun W et al (2008) Pharmacokinetics and 48-week efficacy of nevirapine: 400 mg versus 600 mg per day in HIV-tuberculosis coinfection receiving rifampicin. Antivir Ther 13(4):529–536

    CAS  PubMed  Google Scholar 

  57. Swaminathan S, Padmapriyadarsini C, Venkatesan P, Narendran G, Ramesh Kumar S, Iliayas S et al (2011) Efficacy and safety of once-daily nevirapine- or efavirenz-based antiretroviral therapy in HIV-associated tuberculosis: a randomized clinical trial. Clin Infect Dis 53(7):716–724

    CAS  PubMed  Google Scholar 

  58. Bonnet M, Bhatt N, Baudin E, Silva C, Michon C, Taburet AM et al (2013) Nevirapine versus efavirenz for patients co-infected with HIV and tuberculosis: a randomised non-inferiority trial. Lancet Infect Dis 13(4):303–312

    CAS  PubMed  Google Scholar 

  59. Grinsztejn B, De Castro N, Arnold V, Veloso VG, Morgado M, Pilotto JH et al (2014) Raltegravir for the treatment of patients co-infected with HIV and tuberculosis (ANRS 12 180 Reflate TB): a multicentre, phase 2, non-comparative, open-label, randomised trial. Lancet Infect Dis 14(6):459–467

    CAS  PubMed  Google Scholar 

  60. Taburet AM, Sauvageon H, Grinsztejn B, Assuied A, Veloso V, Pilotto JH et al (2015) Pharmacokinetics of raltegravir in HIV-infected patients on rifampicin-based antitubercular therapy. Clin Infect Dis 61(8):1328–1335

    CAS  PubMed  Google Scholar 

  61. Wenning LA, Hanley WD, Brainard DM, Petry AS, Ghosh K, Jin B et al (2009) Effect of rifampin, a potent inducer of drug-metabolizing enzymes, on the pharmacokinetics of raltegravir. Antimicrob Agents Chemother 53(7):2852–2856

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dooley KE, Sayre P, Borland J, Purdy E, Chen S, Song I et al (2013) Safety, tolerability, and pharmacokinetics of the HIV integrase inhibitor dolutegravir given twice daily with rifampin or once daily with rifabutin: results of a phase 1 study among healthy subjects. J Acquir Immune Defic Syndr 62(1):21–27

    CAS  PubMed  Google Scholar 

  63. Dooley KE, Kaplan R, Mwelase N, Grinsztejn B, Ticona E, Lacerda M et al (2019) Dolutegravir-based antiretroviral therapy for patients co-infected with tuberculosis and HIV: a multicenter, noncomparative, open-label, randomized trial. In: Clin Infect Dis

    Google Scholar 

  64. Loeliger A, Suthar AB, Ripin D, Glaziou P, O'Brien M, Renaud-Thery F et al (2012) Protease inhibitor-containing antiretroviral treatment and tuberculosis: can rifabutin fill the breach? Int J Tuberc Lung Dis 16(1):6–15

    CAS  PubMed  Google Scholar 

  65. Matteelli A, Olliaro P, Signorini L, Cadeo G, Scalzini A, Bonazzi L et al (1999) Tolerability of twice-weekly rifabutin-isoniazid combinations versus daily isoniazid for latent tuberculosis in HIV-infected subjects: a pilot study. Int J Tuberc Lung Dis 3(11):1043–1046

    CAS  PubMed  Google Scholar 

  66. Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E et al (2011) Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med 365(23):2155–2166

    CAS  PubMed  Google Scholar 

  67. Podany AT, Bao Y, Swindells S, Chaisson RE, Andersen JW, Mwelase T et al (2015) Efavirenz pharmacokinetics and pharmacodynamics in HIV-infected persons receiving rifapentine and isoniazid for tuberculosis prevention. Clin Infect Dis 61(8):1322–1327

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Weiner M, Egelund EF, Engle M, Kiser M, Prihoda TJ, Gelfond JA et al (2014) Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother 69(4):1079–1085

    CAS  PubMed  Google Scholar 

  69. Belknap R, Holland D, Feng PJ, Millet JP, Cayla JA, Martinson NA et al (2017) Self-administered versus directly observed once-weekly isoniazid and rifapentine treatment of latent tuberculosis infection: a randomized trial. Ann Intern Med 167(10):689–697

    PubMed  PubMed Central  Google Scholar 

  70. Johnson KT, Churchyard GJ, Sohn H, Dowdy DW (2018) Cost-effectiveness of preventive therapy for tuberculosis with isoniazid and rifapentine versus isoniazid alone in high-burden settings. Clin Infect Dis 67(7):1072–1078

    PubMed  Google Scholar 

  71. Shepardson D, Marks SM, Chesson H, Kerrigan A, Holland DP, Scott N et al (2013) Cost-effectiveness of a 12-dose regimen for treating latent tuberculous infection in the United States. Int J Tuberc Lung Dis 17(12):1531–1537

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shepardson D, MacKenzie WR (2014) Update on cost-effectiveness of a 12-dose regimen for latent tuberculous infection at new rifapentine prices. Int J Tuberc Lung Dis 18(6):751

    PubMed  Google Scholar 

  73. Swindells S, Rramchandani R, Gupta A, Benson CA, Leon-Cruz JT, Mwelase N et al (2019) One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N Engl J Med 380(11):1001–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Organization WH. Report of the WHO Expert Committee, 2015 (including the 19th WHO Model List of Essential Medicines and the 5th WHO Model List of Essential Medicines for Children)

    Google Scholar 

  75. Suthar AB, Lawn SD, del Amo J, Getahun H, Dye C, Sculier D et al (2012) Antiretroviral therapy for prevention of tuberculosis in adults with HIV: a systematic review and meta-analysis. PLoS Med 9(7):e1001270

    CAS  PubMed  PubMed Central  Google Scholar 

  76. TEMPRANO ANRS 12136 Study Group (2015) Danel C, Moh R, Gabillard D, Badje A, Le Carrou J, et al. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N Engl J Med 373(9):808–822

    Google Scholar 

  77. Badje A, Moh R, Gabillard D, Guehi C, Kabran M, Ntakpe JB et al (2017) Effect of isoniazid preventive therapy on risk of death in west African, HIV-infected adults with high CD4 cell counts: long-term follow-up of the Temprano ANRS 12136 trial. Lancet Glob Health 5(11):e1080–e10e9

    PubMed  Google Scholar 

Download references

Acknowledgements

No additional assistance outside the efforts of the authors was contributed for this article. Sources of funding include the National Institutes of Health (P30 AI110527). Both authors report no conflicts of interest with respect to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to April C. Pettit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pettit, A.C., Sterling, T.R. (2019). Recent Advances in the Treatment of Latent Tuberculosis Infection Among Adults Living with HIV Infection. In: Sereti, I., Bisson, G.P., Meintjes, G. (eds) HIV and Tuberculosis. Springer, Cham. https://doi.org/10.1007/978-3-030-29108-2_8

Download citation

Publish with us

Policies and ethics