Skip to main content

Predicting Gender via Eye Movements

  • Conference paper
  • First Online:
HCI International 2022 – Late Breaking Posters (HCII 2022)

Abstract

In this paper, we report the first stable results on gender prediction via eye movements. We use a dataset with images of faces as stimuli and with a large number of 370 participants. Stability has two meanings for us: first that we are able to estimate the standard deviation (SD) of a single prediction experiment (it is around 4.1%); this is achieved by varying the number of participants. And second, we are able to provide a mean accuracy with a very low standard error (SEM): our accuracy is 65.2%, and the SEM is 0.80%; this is achieved through many runs of randomly selecting training and test sets for the prediction. Our study shows that two particular classifiers achieve the best accuracies: Random Forests and Logistic Regression. Our results reconfirm previous findings that females are more biased towards the left eyes of the stimuli.

R. Haria and S. Al Zaidawi contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The GOF dataset can be found here [1].

References

  1. Files - uncloud. https://uncloud.univ-nantes.fr/index.php/s/8KW6dEdyBJqxpmo. Accessed on 21–28 2020

  2. Li, C., Xue, J., Quan, C., Yue, J., Zhang, C.: Biometric recognition via texture features of eye movement trajectories in a visual searching task. PLoS One 13(4), e0194475 (2018)

    Google Scholar 

  3. Al Zaidawi, S.M.K., Prinzler, M.H., Schröder, C., Zachmann, G., Maneth, S.: Gender classification of prepubescent children via eye movements with reading stimuli. In: Companion Publication of the 2020 International Conference on Multimodal Interaction, pp. 1–6 (2020)

    Google Scholar 

  4. Lee, D.K., In, J., Lee, S.: Standard deviation and standard error of the mean. Korean J. Anesthesiol. 68(3), 220 (2015)

    Article  Google Scholar 

  5. Bayes, T.: Naive bayes classifier. In: Article Sources and Contributors, pp. 1–9 (1968)

    Google Scholar 

  6. Press, W.H., Teukolsky, S.A.: Savitzky-golay smoothing filters. Comput. Phys. 4(6), 669–672 (1990)

    Article  Google Scholar 

  7. de Souza Jacomini, R., do Nascimento, M.Z., Dantas, R.D., Ramos, R.P.: Comparison of PCA and ANOVA for information selection of CC and MLO views in classification of mammograms. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 117–126. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32639-4_15

    Chapter  Google Scholar 

  8. George, A., Routray, A.: A score level fusion method for eye movement biometrics. Pattern Recogn. Lett. 82, 207–215 (2016)

    Article  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  10. Powell, M.J.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In: Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1689–1696 (2010)

    Google Scholar 

  12. Bishop, C.M.: Multiclass logistic regression. In: Pattern Recognition and Machine Learning, chapter 4.3.4, pp. 209–210. Springer (2006)

    Google Scholar 

  13. Mercer Moss, F.J., Baddeley, R., Canagarajah, N.: Eye movements to natural images as a function of sex and personality. PLoS One 7(11), e47870 (2012)

    Google Scholar 

  14. Mahdie Klim Al Zaidawi, S., Prinzler, M.H., Lührs, J., Maneth, S.: An extensive study of user identification via eye movements across multiple datasets. arXiv e-prints pp. arXiv-2111 (2021)

    Google Scholar 

  15. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/a:1010933404324

    Article  MATH  Google Scholar 

  16. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/BF00058655

    Article  MATH  Google Scholar 

  17. Sæther, L., Van Belle, W., Laeng, B., Brennen, T., Øvervoll, M.: Anchoring gaze when categorizing faces’ sex: evidence from eye-tracking data. Vision. Res. 49(23), 2870–2880 (2009)

    Article  Google Scholar 

  18. Harwood, M.R., Herman, J.P.: Optimally straight and optimally curved saccades. J. Neurosci. 28(30), 7455–7457 (2008)

    Article  Google Scholar 

  19. Schafer, R.W.: What is a savitzky-golay filter? [lecture notes]. IEEE Signal Process. Mag. 28(4), 111–117 (2011)

    Article  Google Scholar 

  20. Coutrot, A., Binetti, N., Harrison, C., Mareschal, I., Johnston, A.: Face exploration dynamics differentiate men and women. J. Vis. 16(14), 16–16 (2016)

    Article  Google Scholar 

  21. Leonards, U., Scott-Samuel, N.E.: Idiosyncratic initiation of saccadic face exploration in humans. Vision. Res. 45(20), 2677–2684 (2005)

    Article  Google Scholar 

  22. Sargezeh, B.A., Tavakoli, N., Daliri, M.R.: Gender-based eye movement differences in passive indoor picture viewing: an eye-tracking study. Physiol. Behav. 206, 43–50 (2019)

    Article  Google Scholar 

  23. Soukhiya, S.: Investigation of improvement of user and gender prediction accuracy via eye-movement by using ensemble classifier and weighting fixations and saccades. (2021). https://doi.org/10.13140/RG.2.2.26461.90080

  24. Schröder, C., Al Zaidawi, S.M.K., Prinzler, M.H., Maneth, S., Zachmann, G.: Robustness of eye movement biometrics against varying stimuli and varying trajectory length. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–7 (2020)

    Google Scholar 

  25. Broomhead, D.S., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical report, Royal Signals and Radar Establishment Malvern (United Kingdom) (1988)

    Google Scholar 

  26. Weerahandi, S.: Anova under unequal error variances. Biometrics 51(2), 589–599 (1995)

    Article  Google Scholar 

  27. Komogortsev, O.V., Jayarathna, S., Aragon, C.R., Mahmoud, M.: Biometric identification via an oculomotor plant mathematical model. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, pp. 57–60 (2010)

    Google Scholar 

  28. Sammaknejad, N., Pouretemad, H., Eslahchi, C., Salahirad, A., Alinejad, A.: Gender classification based on eye movements: a processing effect during passive face viewing. Adv. Cogn. Psychol. 13(3), 232 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Shubham Ajay Soukhiya for his contribution towards this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishabh Vallabh Varsha Haria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vallabh Varsha Haria, R., Mahdie Klim Al Zaidawi, S., Maneth, S. (2022). Predicting Gender via Eye Movements. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2022 – Late Breaking Posters. HCII 2022. Communications in Computer and Information Science, vol 1654. Springer, Cham. https://doi.org/10.1007/978-3-031-19679-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19679-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19678-2

  • Online ISBN: 978-3-031-19679-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics