Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Riemannian geometry applied to BCI classification. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 629–636. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15995-4_78
Chapter
Google Scholar
Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 112, 172–178 (2013)
Article
Google Scholar
Bhatia, R.: Positive definite matrices. Princeton University Press (2007). ISBN 9780691129181. http://www.jstor.org/stable/j.ctt7rxv2
Congedo, M.: EEG source analysis. PhD thesis, Université de Grenoble (2013)
Google Scholar
Förstner, W., Moonen, B.: A metric for covariance matrices. In: Geodesy-the Challenge of the 3rd Millennium, pp. 299–309. Springer, Cham (2003). https://doi.org/10.1007/978-3-662-05296-9_31
Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 73–80 (2013)
Google Scholar
Kalunga, E.K., Chevallier, S., Barthélemy, Q., Djouani, K., Monacelli, E., Hamam, Y.: Online SSVEP-based BCI using Riemannian geometry. Neurocomputing 191, 55–68 (2016)
Article
MATH
Google Scholar
Kastrati, A., et al.: EEGEyeNet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. arXiv preprint arXiv:2111.05100 (2021)
Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)
Google Scholar
Obeid, I., Picone, J.: Bringing big data to neural interfaces. In: Proceedings of the Fifth International Brain-Computer Interface Meeting (2013)
Google Scholar