Appriou, A., Cichocki, A., Lotte, F.: Modern machine-learning algorithms: for classifying cognitive and affective states from electroencephalography signals. IEEE Syst. Man Cybern. Mag. 6(3), 29–38 (2020)
Article
Google Scholar
Basaklar, T., Tuncel, Y., An, S., Ogras, U.: Wearable devices and low-power design for smart health applications: challenges and opportunities. In: 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 1–1. IEEE (2021)
Google Scholar
Bashivan, P., Bidelman, G.M., Yeasin, M.: Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity. Eur. J. Neurosci. 40(12), 3774–3784 (2014)
Article
Google Scholar
Bashivan, P., Rish, I., Heisig, S.: Mental state recognition via wearable EEG. arXiv preprint arXiv:1602.00985 (2016)
Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)
Bhat, G., Tuncel, Y., An, S., Lee, H.G., Ogras, U.Y.: An ultra-low energy human activity recognition accelerator for wearable health applications. ACM Trans. Embed. Comput. Syst. (TECS) 18(5s), 1–22 (2019)
Article
Google Scholar
Bird, J.J., Manso, L.J., Ribeiro, E.P., Ekart, A., Faria, D.R.: A study on mental state classification using EEG-based brain-machine interface. In: 2018 International Conference on Intelligent Systems (IS), pp. 795–800. IEEE (2018)
Google Scholar
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Article
MATH
Google Scholar
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Article
MATH
Google Scholar
Breiman, L.: Classification and regression trees. Routledge (2017)
Google Scholar
Cannard, C., Wahbeh, H., Delorme, A.: Validating the wearable muse headset for eeg spectral analysis and frontal alpha asymmetry. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3603–3610. IEEE (2021)
Google Scholar
Chevalier, J.A., Gramfort, A., Salmon, J., Thirion, B.: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified multi-task lasso. arXiv preprint arXiv:2009.14310 (2020)
Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)
Article
Google Scholar
Darvishi, A., Khosravi, H., Sadiq, S., Weber, B.: Neurophysiological measurements in higher education: a systematic literature review. Int. J. Artif. Intell. Educ. 1–41 (2021). https://doi.org/10.1007/s40593-021-00256-0
Devlaminck, D., Waegeman, W., Bauwens, B., Wyns, B., Santens, P., Otte, G.: From circular ordinal regression to multilabel classification. In: Proceedings of the 2010 Workshop on Preference Learning (European Conference on Machine Learning, ECML), p. 15 (2010)
Google Scholar
Dongare, S., Padole, D.: Categorization of EEG using hybrid features and voting classifier for motor imagination. In: 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), pp. 217–220. IEEE (2021)
Google Scholar
Gu, J., et al.: Multi-phase cross-modal learning for noninvasive gene mutation prediction in hepatocellular carcinoma. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5814–5817. IEEE (2020)
Google Scholar
Ienca, M., Haselager, P., Emanuel, E.J.: Brain leaks and consumer neurotechnology. Nat. Biotechnol. 36(9), 805–810 (2018)
Article
Google Scholar
Jamil, N., Belkacem, A.N., Ouhbi, S., Guger, C.: Cognitive and affective brain-computer interfaces for improving learning strategies and enhancing student capabilities: a systematic literature review. IEEE Access (2021)
Google Scholar
Kaya, M., Binli, M.K., Ozbay, E., Yanar, H., Mishchenko, Y.: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci. Data 5(1), 1–16 (2018)
Article
Google Scholar
Lotte, F.: A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces. In: Miranda, E.R., Castet, J. (eds.) Guide to Brain-Computer Music Interfacing, pp. 133–161. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6584-2_7
Chapter
Google Scholar
Lotte, F.: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces. Proc. IEEE 103(6), 871–890 (2015)
Article
Google Scholar
Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)
Google Scholar
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)
Article
Google Scholar
Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2010)
Article
Google Scholar
Lotte, F., Jeunet, C.: Towards improved BCI based on human learning principles. In: The 3rd International Winter Conference on Brain-Computer Interface, pp. 1–4. IEEE (2015)
Google Scholar
Lotte, F., Jeunet, C., Mladenović, J., N’Kaoua, B., Pillette, L.: A BCI challenge for the signal processing community: considering the user in the loop (2018)
Google Scholar
Miller, K.J.: A library of human electrocorticographic data and analyses. Nat. Hum. Behav. 3(11), 1225–1235 (2019)
Article
Google Scholar
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
MathSciNet
MATH
Google Scholar
Portillo-Lara, R., Tahirbegi, B., Chapman, C.A., Goding, J.A., Green, R.A.: Mind the gap: state-of-the-art technologies and applications for EEG-based brain-computer interfaces. APL Bioeng. 5(3), 031507 (2021)
Google Scholar
Qian, P., Zhao, Z., Chen, C., Zeng, Z., Li, X.: Two eyes are better than one: exploiting binocular correlation for diabetic retinopathy severity grading. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2115–2118. IEEE (2021)
Google Scholar
Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics. In: CSEDU (2), pp. 501–507 (2018)
Google Scholar
Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3
Chapter
Google Scholar
Qu, X., Liukasemsarn, S., Tu, J., Higgins, A., Hickey, T.J., Hall, M.H.: Identifying clinically and functionally distinct groups among healthy controls and first episode psychosis patients by clustering on EEG patterns. Front. Psychiatry, 938 (2020)
Google Scholar
Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7
Chapter
Google Scholar
Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning. In: 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2018)
Google Scholar
Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)
Google Scholar
Xu, K., et al.: Multi-instance multi-label learning for gene mutation prediction in hepatocellular carcinoma. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 6095–6098. IEEE (2020)
Google Scholar
Zhang, X., Yao, L., Wang, X., Monaghan, J.J., Mcalpine, D., Zhang, Y.: A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J. Neural Eng. 18(3), 031002 (2020)
Google Scholar
Zhao, Z., Chopra, K., Zeng, Z., Li, X.: Sea-net: squeeze-and-excitation attention net for diabetic retinopathy grading. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2496–2500. IEEE (2020)
Google Scholar
Zhao, Z., Xu, K., Li, S., Zeng, Z., Guan, C.: MT-UDA: towards unsupervised cross-modality medical image segmentation with limited source labels. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 293–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_28
Chapter
Google Scholar