Adamaszek, A., Mnich, M., Paluch, K.: New approximation algorithms for \((1,2)\)-TSP. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 107, pp. 9:1–9:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.9
Arora, S.: Polynomial time approximation schemes for Euclidean Traveling Salesman and other geometric problems. J. ACM 45(5), 753–782 (1998). https://doi.org/10.1145/290179.290180
Article
MathSciNet
MATH
Google Scholar
Bansal, N., Bravyi, S., Terhal, B.M.: Classical approximation schemes for the ground-state energy of quantum and classical Ising spin Hamiltonians on planar graphs. Quant. Inf. Comput. 9(7), 701–720 (2009)
MathSciNet
MATH
Google Scholar
Berman, P., Karpinski, M.: \(8/7\)-approximation algorithm for \((1,2)\)-TSP. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), pp. 641–648 (2006)
Google Scholar
Borradaile, G., Klein, P.N., Mathieu, C.: A polynomial-time approximation scheme for Euclidean Steiner forest. ACM Trans. Algorithms 11(3), 19:1–19:20 (2015). https://doi.org/10.1145/2629654
Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report 388, Carnegie Mellon University (1976)
Google Scholar
Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). https://doi.org/10.4153/CJM-1965-045-4
Article
MathSciNet
MATH
Google Scholar
Edmonds, J., Johnson, E.L.: Matchings, Euler tours and the Chinese postman problem. Math. Program. 5, 88–124 (1973)
Article
MATH
Google Scholar
Ergun, O., Kuyzu, G., Savelsbergh, M.: Reducing truckload transportation costs through collaboration. Transp. Sci. 41(2), 206–221 (2007). https://doi.org/10.1287/trsc.1060.0169
Article
Google Scholar
Ergun, O., Kuyzu, G., Savelsbergh, M.: Shipper collaboration. Compute. Oper. Res. 34(6), 1551–1560 (2007). https://doi.org/10.1016/j.cor.2005.07.026. Part Special Issue: Odysseus 2003 Second International Workshop on Freight Transportation Logistics
Hartvigsen, D.: An extension of matching theory. Ph.D. thesis, Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA, USA (1984). https://david-hartvigsen.net/?page_id=33
Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001). Preliminary version in FOCS 1998
Google Scholar
Lintzmayer, C.N., Miyazawa, F.K., Moura, P.F.S., Xavier, E.C.: Randomized approximation scheme for Steiner Multi Cycle in the Euclidean plane. Theor. Comput. Sci. 835, 134–155 (2020). https://doi.org/10.1016/j.tcs.2020.06.022
Article
MathSciNet
MATH
Google Scholar
Lovász, L., Plummer, M.D.: Matching Theory. North-Holland Mathematics Studies, vol. 121. Elsevier, Amsterdam (1986)
MATH
Google Scholar
Papadimitriou, C.H., Yannakakis, M.: The Traveling Salesman Problem with distances one and two. Math. Oper. Res. 18(1), 1–11 (1993). https://doi.org/10.1287/moor.18.1.1
Article
MathSciNet
MATH
Google Scholar
Pereira, V.N.G., Felice, M.C.S., Hokama, P.H.D.B., Xavier, E.C.: The Steiner Multi Cycle Problem with applications to a collaborative truckload problem. In: 17th International Symposium on Experimental Algorithms (SEA 2018), pp. 26:1–26:13 (2018). https://doi.org/10.4230/LIPIcs.SEA.2018.26
Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6, 563–581 (1977)
Article
MathSciNet
MATH
Google Scholar
Salazar-González, J.J.: The Steiner cycle polytope. Eur. J. Oper. Res. 147(3), 671–679 (2003). https://doi.org/10.1016/S0377-2217(02)00359-4
Article
MathSciNet
MATH
Google Scholar
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)
MATH
Google Scholar
Tutte, W.T.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954)
Article
MathSciNet
MATH
Google Scholar
Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04565-7
Book
MATH
Google Scholar