Ashikhmin, A., Barg, A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998). https://doi.org/10.1109/18.705584
Article
MathSciNet
MATH
Google Scholar
Calderbank, A.R., Goethals, J.M.: Three-weight codes and association schemes. Philips J. Res. 39(4–5), 143–152 (1984)
MathSciNet
MATH
Google Scholar
Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005). https://doi.org/10.1109/TIT.2005.847722
Article
MathSciNet
MATH
Google Scholar
Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for des-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998). https://doi.org/10.1023/A:1008344232130
Article
MathSciNet
MATH
Google Scholar
Ding, C., Heng, Z.: The subfield codes of ovoid codes. IEEE Trans. Inf. Theory 65(8), 4715–4729 (2019). https://doi.org/10.1109/TIT.2019.2907276
Article
MathSciNet
MATH
Google Scholar
Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005). https://doi.org/10.1016/j.tcs.2004.09.011
Article
MathSciNet
MATH
Google Scholar
Ding, C., Yin, J.: Sets of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 54(8), 3741–3745 (2008). https://doi.org/10.1109/TIT.2008.926410
Article
MathSciNet
MATH
Google Scholar
Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 4 Aug 2022
Heng, Z., Ding, C.: The subfield codes of hyperoval and conic codes. Finite Fields Appl. 56, 308–331 (2019). https://doi.org/10.1016/j.ffa.2018.12.006
Article
MathSciNet
MATH
Google Scholar
Heng, Z., Wang, Q., Ding, C.: Two families of optimal linear codes and their subfield codes. IEEE Trans. Inf. Theory 66(11), 6872–6883 (2020). https://doi.org/10.1109/TIT.2020.3006846
Article
MathSciNet
MATH
Google Scholar
Heng, Z., Yue, Q.: Several classes of cyclic codes with either optimal three weights or a few weights. IEEE Trans. Inf. Theory 62(8), 4501–4513 (2016). https://doi.org/10.1109/TIT.2016.2550029
Article
MathSciNet
MATH
Google Scholar
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Book
MATH
Google Scholar
Li, C., Qu, L., Ling, S.: On the covering structures of two classes of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 55(1), 70–82 (2009). https://doi.org/10.1109/TIT.2008.2008145
Article
MathSciNet
MATH
Google Scholar
Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1983)
MATH
Google Scholar
MacWilliams, F.J., Sloane, N.J.A.: The Theory Of Error-Correcting Codes. North-Holland, Amsterdam, The Netherlands (1977)
Google Scholar
Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)
Google Scholar
Massey, J.L.: Some applications of coding theory in cryptography. In: Codes and Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)
Google Scholar
Schmidt, B., White, C.: All two-weight irreducible cyclic codes? Finite Fields Their Appl. 8(1), 1–17 (2002). https://doi.org/10.1006/ffta.2000.0293
Article
MathSciNet
MATH
Google Scholar
Shi, M., Solé, P.: Three-weight codes, triple sum sets, and strongly walk regular graphs. Des. Codes Crypt. 87(10), 2395–2404 (2019). https://doi.org/10.1007/s10623-019-00628-7
Article
MathSciNet
MATH
Google Scholar
Vega, G.: A characterization of a class of optimal three-weight cyclic codes of dimension 3 over any finite field. Finite Fields Their Appl. 42, 23–38 (2016). https://doi.org/10.1016/j.ffa.2016.07.001
Article
MathSciNet
MATH
Google Scholar
Yuan, J., Ding, C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006). https://doi.org/10.1109/TIT.2005.860412
Article
MathSciNet
MATH
Google Scholar