Skip to main content

On the Subfield Codes of a Subclass of Optimal Cyclic Codes and Their Covering Structures

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

  • 804 Accesses

  • 4 Citations

Abstract

A class of optimal three-weight \([q^k-1,k+1,q^{k-1}(q-1)-1]\) cyclic codes over , with \(k\ge 2\), achieving the Griesmer lower bound, was presented by Heng and Yue [IEEE Trans. Inf. Theory, 62(8) (2016) 4501–4513]. In this paper we study some of the subfield codes of this class of optimal cyclic codes when \(k=2\). The weight distributions of the subfield codes are settled. It turns out that some of these codes are optimal and others have the best known parameters. The duals of the subfield codes are also investigated and found to be almost optimal with respect to the sphere-packing bound. In addition, the covering structure for the studied subfield codes is determined. Some of these codes are found to have the important property that any nonzero codeword is minimal. This is a desirable property which is useful in the design of a secret sharing scheme based on a linear code. Moreover, we present a specific example of a secret sharing scheme based on one of these subfield codes.

F. Hernández - PhD student, manuscript partially supported by CONACyT, México.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashikhmin, A., Barg, A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998). https://doi.org/10.1109/18.705584

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderbank, A.R., Goethals, J.M.: Three-weight codes and association schemes. Philips J. Res. 39(4–5), 143–152 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005). https://doi.org/10.1109/TIT.2005.847722

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for des-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998). https://doi.org/10.1023/A:1008344232130

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding, C., Heng, Z.: The subfield codes of ovoid codes. IEEE Trans. Inf. Theory 65(8), 4715–4729 (2019). https://doi.org/10.1109/TIT.2019.2907276

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005). https://doi.org/10.1016/j.tcs.2004.09.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, C., Yin, J.: Sets of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 54(8), 3741–3745 (2008). https://doi.org/10.1109/TIT.2008.926410

    Article  MathSciNet  MATH  Google Scholar 

  8. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 4 Aug 2022

  9. Heng, Z., Ding, C.: The subfield codes of hyperoval and conic codes. Finite Fields Appl. 56, 308–331 (2019). https://doi.org/10.1016/j.ffa.2018.12.006

    Article  MathSciNet  MATH  Google Scholar 

  10. Heng, Z., Wang, Q., Ding, C.: Two families of optimal linear codes and their subfield codes. IEEE Trans. Inf. Theory 66(11), 6872–6883 (2020). https://doi.org/10.1109/TIT.2020.3006846

    Article  MathSciNet  MATH  Google Scholar 

  11. Heng, Z., Yue, Q.: Several classes of cyclic codes with either optimal three weights or a few weights. IEEE Trans. Inf. Theory 62(8), 4501–4513 (2016). https://doi.org/10.1109/TIT.2016.2550029

    Article  MathSciNet  MATH  Google Scholar 

  12. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  13. Li, C., Qu, L., Ling, S.: On the covering structures of two classes of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 55(1), 70–82 (2009). https://doi.org/10.1109/TIT.2008.2008145

    Article  MathSciNet  MATH  Google Scholar 

  14. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1983)

    MATH  Google Scholar 

  15. MacWilliams, F.J., Sloane, N.J.A.: The Theory Of Error-Correcting Codes. North-Holland, Amsterdam, The Netherlands (1977)

    Google Scholar 

  16. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)

    Google Scholar 

  17. Massey, J.L.: Some applications of coding theory in cryptography. In: Codes and Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)

    Google Scholar 

  18. Schmidt, B., White, C.: All two-weight irreducible cyclic codes? Finite Fields Their Appl. 8(1), 1–17 (2002). https://doi.org/10.1006/ffta.2000.0293

    Article  MathSciNet  MATH  Google Scholar 

  19. Shi, M., Solé, P.: Three-weight codes, triple sum sets, and strongly walk regular graphs. Des. Codes Crypt. 87(10), 2395–2404 (2019). https://doi.org/10.1007/s10623-019-00628-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Vega, G.: A characterization of a class of optimal three-weight cyclic codes of dimension 3 over any finite field. Finite Fields Their Appl. 42, 23–38 (2016). https://doi.org/10.1016/j.ffa.2016.07.001

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, J., Ding, C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006). https://doi.org/10.1109/TIT.2005.860412

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernández, F., Vega, G. (2022). On the Subfield Codes of a Subclass of Optimal Cyclic Codes and Their Covering Structures. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics