Baste, J., Rautenbach, D.: Degenerate matchings and edge colorings. Discrete Appl. Math. 239, 38–44 (2018). https://doi.org/10.1016/j.dam.2018.01.002
Article
MathSciNet
MATH
Google Scholar
Biasi, M.D.: Max-weight connected subgraph problem in planar graphs. Theor. Comput. Sci. Stack Exch. https://cstheory.stackexchange.com/q/21669
Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015). https://doi.org/10.1016/j.ic.2014.12.008, 40th International Colloquium on Automata, Languages and Programming (ICALP 2013)
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: a new technique for kernelization lower bounds. In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS), LIPIcs, vol. 9, pp. 165–176 (2011). https://doi.org/10.4230/LIPIcs.STACS.2011.165
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008). https://www.springer.com/gp/book/9781846289699
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Google Scholar
de C. M. Gomes, G., Masquio, B.P., Pinto, P.E.D., dos Santos, V.F., Szwarcfiter, J.L.: Disconnected matchings. CoRR abs/2112.09248 (2021). https://arxiv.org/abs/2112.09248
Cameron, K.: Induced matchings. Discrete Appl. Math. 24(1), 97–102 (1989). https://doi.org/10.1016/0166-218X(92)90275-F
Article
MathSciNet
MATH
Google Scholar
Cameron, K.: Connected matchings. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You Shrink! LNCS, vol. 2570, pp. 34–38. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36478-1_5
Chapter
Google Scholar
Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Book
MATH
Google Scholar
Duan, R., Pettie, S., Su, H.H.: Scaling algorithms for weighted matching in general graphs. ACM Trans. Algorithms 14(1) (2018). https://doi.org/10.1145/3155301
Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Natl Bureau Stand. B 69, 125–130 (1965). https://doi.org/10.6028/jres.069B.013
Article
MathSciNet
MATH
Google Scholar
Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). https://doi.org/10.4153/CJM-1965-045-4
Article
MathSciNet
MATH
Google Scholar
Fürst, M., Rautenbach, D.: On some hard and some tractable cases of the maximum acyclic matching problem. Ann. Oper. Res. 279(1), 291–300 (2019). https://doi.org/10.1007/s10479-019-03311-1
Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977). https://doi.org/10.1137/0132071
Article
MathSciNet
MATH
Google Scholar
Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Google Scholar
Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R.: Generalized subgraph-restricted matchings in graphs. Discrete Math. 293(1), 129–138 (2005). https://doi.org/10.1016/j.disc.2004.08.027
Article
MathSciNet
MATH
Google Scholar
Golumbic, M.C., Hirst, T., Lewenstein, M.: Uniquely restricted matchings. Algorithmica 31(2), 139–154 (2001). https://doi.org/10.1007/s00453-001-0004-z
Article
MathSciNet
MATH
Google Scholar
Gomes, G.C.M., Masquio, B.P., Pinto, P.E.D., dos Santos, V.F., Szwarcfiter, J.L.: Disconnected matchings. In: Chen, C.-Y., Hon, W.-K., Hung, L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 579–590. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89543-3_48
Chapter
Google Scholar
Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Klemz, B., Rote, G.: Linear-time algorithms for maximum-weight induced matchings and minimum chain covers in convex bipartite graphs. Algorithmica 84(4), 1064–1080 (2022). https://doi.org/10.1007/s00453-021-00904-w
Article
MathSciNet
MATH
Google Scholar
Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-free and P5-free graphs, and in graphs with matching and induced matching of equal maximum size. Algorithmica 37(4), 327–346 (2003). https://doi.org/10.1007/s00453-003-1035-4
Article
MathSciNet
MATH
Google Scholar
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982). https://doi.org/10.1137/0211025
Article
MathSciNet
MATH
Google Scholar
Lozin, V.V.: On maximum induced matchings in bipartite graphs. Inf. Process. Lett. 81(1), 7–11 (2002). https://doi.org/10.1016/S0020-0190(01)00185-5
Article
MathSciNet
MATH
Google Scholar
Masquio, B.P.: Emparelhamentos desconexos. Master’s thesis, Universidade do Estado do Rio de Janeiro (2019). http://www.bdtd.uerj.br/handle/1/7663
Micali, S., Vazirani, V.V.: An \({O}(\sqrt{|V|}|{E}|)\) algorithm for finding maximum matching in general graphs. In: 21st Annual IEEE Symposium on Foundations of Computer Science, pp. 17–27, October 1980. https://doi.org/10.1109/SFCS.1980.12
Moser, H., Sikdar, S.: The parameterized complexity of the induced matching problem. Discrete Appl. Math. 157(4), 715–727 (2009). https://doi.org/10.1016/j.dam.2008.07.011
Article
MathSciNet
MATH
Google Scholar
Panda, B.S., Chaudhary, J.: Acyclic matching in some subclasses of graphs. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds.) IWOCA 2020. LNCS, vol. 12126, pp. 409–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48966-3_31
Chapter
Google Scholar
Panda, B.S., Pandey, A., Chaudhary, J., Dane, P., Kashyap, M.: Maximum weight induced matching in some subclasses of bipartite graphs. J. Comb. Optim. 40(3), 713–732 (2020). https://doi.org/10.1007/s10878-020-00611-2
Article
MathSciNet
MATH
Google Scholar
Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4