Skip to main content

Computing and Listing Avoidable Vertices and Paths

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

  • 820 Accesses

  • 1 Citation

Abstract

A simplicial vertex of a graph is a vertex whose neighborhood is a clique. It is known that listing all simplicial vertices can be done in O(nm) time or \(O(n^{\omega })\) time, where \(O(n^{\omega })\) is the time needed to perform a fast matrix multiplication. The notion of avoidable vertices generalizes the concept of simplicial vertices in the following way: a vertex u is avoidable if every induced path on three vertices with middle vertex u is contained in an induced cycle. We present algorithms for listing all avoidable vertices of a graph through the notion of minimal triangulations and common neighborhood detection. In particular we give algorithms with running times \(O(n^{2}m)\) and \(O(n^{1+\omega })\), respectively. Additionally, based on a simplified graph traversal we propose a fast algorithm that runs in time \(O(n^2 + m^2)\) and matches the corresponding running time of listing all simplicial vertices on sparse graphs with \(m=O(n)\). Moreover, we show that our algorithms cannot be improved significantly, as we prove that under plausible complexity assumptions there is no truly subquadratic algorithm for recognizing an avoidable vertex. To complement our results, we consider their natural generalizations of avoidable edges and avoidable paths. We propose an O(nm)-time algorithm that recognizes whether a given induced path is avoidable.

C. Papadopoulos is supported by Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research grant”, Project FANTA (eFficient Algorithms for NeTwork Analysis), number HFRI-FM17-431.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboulker, P., Charbit, P., Trotignon, N., Vuskovic, K.: Vertex elimination orderings for hereditary graph classes. Discret. Math. 338(5), 825–834 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of SODA 2021, pp. 522–539. SIAM (2021)

    Google Scholar 

  3. Beisegel, J., Chudnovsky, M., Gurvich, V., Milanic, M., Servatius, M.: Avoidable vertices and edges in graphs. In: Proceedings of WADS 2019. vol. 11646, pp. 126–139 (2019)

    Google Scholar 

  4. Berry, A.: A wide-range efficient algorithm for minimal triangulation. In: Proceedings of SODA 1999, pp. 860–861. ACM/SIAM (1999)

    Google Scholar 

  5. Berry, A., Blair, J.R.S., Bordat, J.P., Simonet, G.: Graph extremities defined by search algorithms. Algorithms 3(2), 100–124 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berry, A., Blair, J.R.S., Heggernes, P., Peyton, B.W.: Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berry, A., Bordat, J.P.: Separability generalizes dirac’s theorem. Discret. Appl. Math. 84(1–3), 43–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berry, A., Heggernes, P., Villanger, Y.: A vertex incremental approach for maintaining chordality. Discret. Math. 306(3), 318–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonamy, M., Defrain, O., Hatzel, M., Thiebaut, J.: Avoidable paths in graphs. Electron. J. Comb. 27(4), P4.46 (2020)

    Google Scholar 

  10. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)

    Google Scholar 

  11. Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 25(1), 71–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ducoffe, G.: The diameter of at-free graphs. J. Graph Theory 99, 594–614 (2022)

    Article  MathSciNet  Google Scholar 

  13. Gurvich, V., Krnc, M., Milanic, M., Vyalyi, M.N.: Shifting paths to avoidable ones. J. Graph Theory 100, 69–83 (2022)

    Article  MathSciNet  Google Scholar 

  14. Heggernes, P.: Minimal triangulations of graphs: a survey. Discret. Math. 306(3), 297–317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62, 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7, 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Inf. Process. Lett. 74(3–4), 115–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kratsch, D., Spinrad, J.P.: Between O(nm) and o(n\({}^{\text{ alpha }}\)). SIAM J. Comput. 36, 310–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ohtsuki, T., Cheung, L.K., Fujisawa, T.: Minimal triangulation of a graph and optimal pivoting order in a sparse matrix. J. Math. Anal. Appl. 54(3), 622–633 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Papadopoulos, C., Zisis, A.: Computing and listing avoidable vertices and paths. CoRR abs/2108.07160 (2021)

    Google Scholar 

  22. Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: Proceedings of STOC 2013, pp. 515–524 (2013)

    Google Scholar 

  23. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tedder, M., Corneil, D., Habib, M., Paul, C.: simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_52

  25. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348, 357–365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis Papadopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papadopoulos, C., Zisis, A.E. (2022). Computing and Listing Avoidable Vertices and Paths. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics