Alumur, S., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190(1), 1–21 (2008)
Article
MathSciNet
MATH
Google Scholar
Ando, R., Matsui, T.: Algorithm for single allocation problem on hub-and-spoke networks in 2-dimensional plane. In: Algorithms and Computation, pp. 474–483 (2011)
Google Scholar
Benedito, M.P.L., Pedrosa, L.L.C.: Approximation algorithms for median hub location problems. J. Comb. Optim. 38(2), 375–401 (2019)
Article
MathSciNet
MATH
Google Scholar
Benedito, M.P.L., Pedrosa, L.L.C.: An efficient parameterized approximation scheme for the star \(k\)-hub center. Procedia Comput. Sci. 195, 49–58 (2021)
Article
Google Scholar
Blum, J.: W[1]-hardness of the \(k\)-center problem parameterized by the skeleton dimension. J. Comb. Optim. 44, 2762–2781 (2022). https://doi.org/10.1007/s10878-021-00792-4
Article
MathSciNet
MATH
Google Scholar
Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)
Article
MathSciNet
MATH
Google Scholar
Bordini, C.F., Vignatti, A.L.: An approximation algorithm for the \(p\)-hub median problem. Electron. Notes Disc. Math. 62, 183–188 (2017)
Article
MathSciNet
MATH
Google Scholar
Campbell, J., Ernst, A., Krishnamoorthy, M.: Hub location problems. Facility location: application and theory (2002)
Google Scholar
Campbell, J.F.: Hub location and the \(p\)-Hub median problem. Oper. Res. 44(6), 923–935 (1996)
Article
MathSciNet
MATH
Google Scholar
Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the \(k\)-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)
Article
MathSciNet
MATH
Google Scholar
Chen, L.H., Cheng, D.W., Hsieh, S.Y., Hung, L.J., Lee, C.W., Wu, B.Y.: Approximation Algorithms for the Star \(k\)-Hub Center Problem in Metric Graphs, pp. 222–234. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-42634-1_18
Cornuéjols, G., Nemhauser, G., Wolsey, L.: The uncapacitated facility location problem. Cornell University Operations Research and Industrial Engineering, Technical report (1983)
Google Scholar
Cygan, M., et al.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3
Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Fixed-parameter algorithms for \((k, r)\)-center in planar graphs and map graphs. ACM Trans. Algorithms 1(1), 33–47 (2005)
Article
MathSciNet
MATH
Google Scholar
Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Fixed-parameter algorithms for the \((k, r)\)-center in planar graphs and map graphs. In: International Colloquium on Automata, Languages, and Programming, pp. 829–844. Springer (2003). https://doi.org/10.1007/3-540-45061-0_65
Farahani, R.Z., Hekmatfar, M., Arabani, A.B., Nikbakhsh, E.: Hub location problems: a review of models, classification, solution techniques, and applications. Comput. Ind. Eng. 64(4), 1096–1109 (2013)
Article
Google Scholar
Feldmann, A.E.: Fixed-parameter approximations for \(k\)-center problems in low highway dimension graphs. Algorithmica 81(3), 1031–1052 (2019)
Article
MathSciNet
MATH
Google Scholar
Feldmann, A.E., Karthik, C., Lee, E., Manurangsi, P.: A survey on approximation in parameterized complexity: hardness and algorithms. Algorithms 13(6), 146 (2020)
Article
MathSciNet
Google Scholar
Feldmann, A.E., Marx, D.: The parameterized hardness of the \(k\)-center problem in transportation networks. Algorithmica 82(7), 1989–2005 (2020)
Article
MathSciNet
MATH
Google Scholar
Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower bounds for problems parameterized by clique-width. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 493–502. SIAM (2010)
Google Scholar
Ge, D., He, S., Ye, Y., Zhang, J.: Geometric rounding: a dependent randomized rounding scheme. J. Comb. Optim. 22(4), 699–725 (2010)
Article
MathSciNet
MATH
Google Scholar
Gelareh, S., Pisinger, D.: Fleet deployment, network design and hub location of liner shipping companies. Transp. Res. Part E: Logist. Transp. Rev. 47(6), 947–964 (2011)
Article
Google Scholar
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)
Article
MathSciNet
MATH
Google Scholar
Goyal, D., Jaiswal, R.: Tight FPT approximation for constrained \(k\)-center and \(k\)-supplier. arXiv preprint arXiv:2110.14242 (2021)
Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982)
Article
MathSciNet
MATH
Google Scholar
Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the \(k\)-center problem. Math. Oper. Res. 10(2), 180–184 (1985)
Article
MathSciNet
MATH
Google Scholar
Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for Bottleneck problems. J. ACM 33(3), 533–550 (1986)
Article
MathSciNet
Google Scholar
Iwasa, M., Saito, H., Matsui, T.: Approximation algorithms for the single allocation problem in hub-and-spoke networks and related metric labeling problems. Discret. Appl. Math. 157(9), 2078–2088 (2009)
Article
MathSciNet
MATH
Google Scholar
Jaillet, P., Song, G., Yu, G.: Airline network design and hub location problems. Locat. Sci. 4(3), 195–212 (1996)
Article
MATH
Google Scholar
Kara, B.Y., Tansel, B.: On the single-assignment \(p\)-hub center problem. Eur. J. Oper. Res. 125(3), 648–655 (2000)
Article
MATH
Google Scholar
Karimi, H., Bashiri, M.: Hub covering location problems with different coverage types. Scientia Iranica 18(6), 1571–1578 (2011)
Article
Google Scholar
Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds, and approximation for \((k, r)\)-center. Discret. Appl. Math. 264, 90–117 (2019)
Article
MathSciNet
MATH
Google Scholar
Kloks, T.: Treewidth: Computations and Approximations, vol. 842. Springer Science & Business Media (1994). https://doi.org/10.1007/BFb0045388
Lampis, M.: Parameterized approximation schemes using graph widths. In: International Colloquium on Automata, Languages, and Programming, pp. 775–786. Springer (2014). https://doi.org/10.1007/978-3-662-43948-7_64
Liang, H.: The hardness and approximation of the star \(p\)-hub center problem. Oper. Res. Lett. 41(2), 138–141 (2013)
Article
MathSciNet
MATH
Google Scholar
Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)
Article
Google Scholar
O’Kelly, M.E.: The location of interacting hub facilities. Transp. Sci. 20(2), 92–106 (1986)
Article
Google Scholar
O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 32(3), 393–404 (1987)
Article
MathSciNet
MATH
Google Scholar
Pedrosa, L.L.C., dos Santos, V.F., Schouery, R.C.S.: Uma aproximação para o problema de alocação de terminais. In: Anais do CSBC, ETC (2016)
Google Scholar
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)
Google Scholar
Yaman, H., Elloumi, S.: Star \(p\)-hub center problem and star \(p\)-hub median problem with bounded path lengths. Comput. Oper. Res. 39(11), 2725–2732 (2012)
Article
MathSciNet
MATH
Google Scholar
Yang, T.H.: Stochastic air freight hub location and flight routes planning. Appl. Math. Model. 33(12), 4424–4430 (2009)
Article
MATH
Google Scholar