Abdolazimi Y, Stojanova Z, Segil N (2016) Selection of cell fate in the organ of Corti involves the integration of Hes/Hey signaling at the Atoh1 promoter. Development 143:841–850. https://doi.org/10.1242/dev.129320
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdul-Aziz D, Hathiramani N, Phung L et al (2021) HIC1 Represses Atoh1 Transcription and Hair Cell Differentiation in the Cochlea. Stem Cell Reports 16:797–809. https://doi.org/10.1016/j.stemcr.2021.02.022
Article
CAS
PubMed
PubMed Central
Google Scholar
Atkinson PJ, Dong Y, Gu S et al (2018) Sox2 haploinsufficiency primes regeneration and Wnt responsiveness in the mouse cochlea. J Clin Invest 128:1641–1656. https://doi.org/10.1172/JCI97248
Article
PubMed
PubMed Central
Google Scholar
Babola TA, Kersbergen CJ, Wang HC et al (2020) Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space eLife 2020(9):e52160. https://doi.org/10.7554/eLife.52160
Article
Google Scholar
Basch ML, Brown RM, Jen HI et al (2016) Where hearing starts: The development of the mammalian cochlea. J Anat 228:233–254. https://doi.org/10.1111/joa.12314
Article
PubMed
Google Scholar
Benito-Gonzalez A, Doetzlhofer A (2014) Hey1 and Hey2 Control the Spatial and Temporal Pattern of Mammalian Auditory Hair Cell Differentiation Downstream of Hedgehog Signaling. J Neurosci 34:12865–12876. https://doi.org/10.1523/JNEUROSCI.1494-14.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Bermingham-McDonogh O, Oesterle EC, Stone JS et al (2006) Expression of Prox1 during mouse cochlear development. J Comp Neurol 496:172–186. https://doi.org/10.1002/cne.20944
Article
CAS
PubMed
PubMed Central
Google Scholar
Bohne BA (1976) Safe level for noise exposure? Ann Otol Rhinol Laryngol 85. https://doi.org/10.1177/000348947608500602
Bramhall NF, Shi F, Arnold K et al (2014) Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Reports 2:311–322. https://doi.org/10.1016/j.stemcr.2014.01.008
Article
CAS
PubMed
PubMed Central
Google Scholar
Briggs KJ, Corcoran-schwartz IM, Zhang W et al (2008) Tumor Suppressors in Medulloblastoma. Genes Dev 770–785. https://doi.org/10.1101/gad.1640908.pathway
Brignull HR, Raible DW, Stone JS (2009) Feathers and fins: Non-mammalian models for hair cell regeneration. Brain Res. 1277:12–23
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooker R, Hozumi K, Lewis J (2006) Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 133:1277–1286. https://doi.org/10.1242/dev.02284
Article
CAS
PubMed
Google Scholar
Buch T, Heppner FL, Tertilt C et al (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2:419–426. https://doi.org/10.1038/nmeth762
Article
CAS
PubMed
Google Scholar
Cai T, Seymour ML, Zhang H et al (2013) Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti. J Neurosci 33:10110–10122. https://doi.org/10.1523/JNEUROSCI.5606-12.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell DP, Chrysostomou E, Doetzlhofer A (2015) Canonical Notch signaling plays an instructive role in auditory supporting cell development. Nat Publ Gr 6:19484. https://doi.org/10.1038/srep19484
Article
CAS
Google Scholar
Chai R, Xia A, Wang T et al (2011) Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol 12:455–469. https://doi.org/10.1007/s10162-011-0267-2
Article
PubMed
PubMed Central
Google Scholar
Chai R, Kuo B, Wang T et al (2012) Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci USA 109:8167–8172. https://doi.org/10.1073/pnas.1202774109
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126:1581–1590
Article
CAS
PubMed
Google Scholar
Chen P, Johnson JE, Zoghbi HY et al (2002) The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505. https://doi.org/10.1007/s00267-008-9138-y
Article
CAS
PubMed
Google Scholar
Chen Y, Gu Y, Li Y et al (2021) Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea. Cell Rep 35:109016. https://doi.org/10.1016/j.celrep.2021.109016
Article
CAS
PubMed
Google Scholar
Chessum L, Matern MS, Kelly MC et al (2018) Helios is a key transcriptional regulator of outer hair cell maturation. Nature 563:696–700. https://doi.org/10.1038/s41586-018-0728-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Chrysostomou E, Zhou L, Darcy YL et al (2020) The notch ligand jagged1 is required for the formation, maintenance, and survival of Hensen’s cells in the mouse cochlea. J Neurosci 40:9401–9413. https://doi.org/10.1523/JNEUROSCI.1192-20.2020
Article
CAS
PubMed
PubMed Central
Google Scholar
Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240:1772–1774. https://doi.org/10.1126/science.3381100
Article
CAS
PubMed
Google Scholar
Costa A, Sanchez-Guardado L, Juniat S et al (2015) Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development 142:1948–1959. https://doi.org/10.1242/dev.119149
Article
CAS
PubMed
Google Scholar
Cox BC, Liu Z, Lagarde MMM et al (2012) Conditional gene expression in the mouse inner ear using cre-loxP. J. Assoc. Res. Otolaryngol. 13:295–322
Article
PubMed
PubMed Central
Google Scholar
Cox BC, Chai R, Lenoir A et al (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141:816–829. https://doi.org/10.1242/dev.103036
Article
CAS
PubMed
PubMed Central
Google Scholar
Dabdoub A, Puligilla C, Jones JM et al (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A 105:18396–18401. https://doi.org/10.1073/pnas.0808175105
Article
PubMed
PubMed Central
Google Scholar
Doetzlhofer A, Basch ML, Ohyama T et al (2009) Hey2 Regulation by FGF Provides a Notch-Independent Mechanism for Maintaining Pillar Cell Fate in the Organ of Corti. Dev Cell 16:58–69. https://doi.org/10.1016/j.devcel.2008.11.008
Article
CAS
PubMed
PubMed Central
Google Scholar
Driver EC, Sillers L, Coate TM et al (2013) The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 376:86–98. https://doi.org/10.1016/j.ydbio.2013.01.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan JS, Fritzsch B (2013) Continued Expression of GATA3 Is Necessary for Cochlear Neurosensory Development. PLoS One 8. https://doi.org/10.1371/journal.pone.0062046
Fritzsch B, Dillard M, Lavado A et al (2010) Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS One 5:1–12. https://doi.org/10.1371/journal.pone.0009377
Article
CAS
Google Scholar
Golub JJS, Tong L, Ngyuen TTBT et al (2012) Hair Cell Replacement in Adult Mouse Utricles after Targeted Ablation of Hair Cells with Diphtheria Toxin. J Neurosci 32:15093–15105. https://doi.org/10.1523/JNEUROSCI.1709-12.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Goutman JD, Elgoyhen AB, Gómez-Casati ME (2015) Cochlear hair cells: The sound-sensing machines. FEBS Lett 589:3354–3361. https://doi.org/10.1016/j.febslet.2015.08.030
Article
CAS
PubMed
PubMed Central
Google Scholar
Groves AK, Zhang KD, Fekete DM (2013) The Genetics of Hair Cell Development and Regeneration. Annu Rev Neurosci 36:361–381. https://doi.org/10.1146/annurev-neuro-062012-170309
Article
CAS
PubMed
PubMed Central
Google Scholar
Gubbels SP, Woessner DW, Mitchell JC et al (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455:537–541. https://doi.org/10.1038/nature07265
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartman BH, Hayashi T, Nelson BR et al (2007) Dll3 is expressed in developing hair cells in the mammalian cochlea. Dev Dyn 236:2875–2883. https://doi.org/10.1002/dvdy.21307
Article
CAS
PubMed
Google Scholar
Hartman BH, Basak O, Nelson BR et al (2009) Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. J Assoc Res Otolaryngol 10:321–340. https://doi.org/10.1007/s10162-009-0162-2
Article
PubMed
PubMed Central
Google Scholar
Hartman BH, Reh TA, Bermingham-McDonogh O (2010) Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci USA 107:15792–15797. https://doi.org/10.1073/pnas.1002827107
Article
PubMed
PubMed Central
Google Scholar
Hayashi T, Cunningham D, Bermingham-McDonogh O (2007) Loss of FGFR3 leads to excess hair cell development in the mouse organ of Corti. Dev Dyn 236:525–533. https://doi.org/10.1002/dvdy.21026
Article
CAS
PubMed
Google Scholar
Hayashi T, Kokubo H, Hartman BH et al (2008a) Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea. Dev Biol 316:87–99. https://doi.org/10.1016/j.ydbio.2008.01.006
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayashi T, Ray CA, Bermingham-McDonogh O (2008b) Fgf20 Is Required for Sensory Epithelial Specification in the Developing Cochlea. J Neurosci 28:5991–5999. https://doi.org/10.1523/jneurosci.1690-08.2008
Article
CAS
PubMed
PubMed Central
Google Scholar
Henley CM, Rybak LP (1995) Ototoxicity in developing mammals. Brain Res Rev 20:68–90. https://doi.org/10.1016/0165-0173(94)00006-B
Article
CAS
PubMed
Google Scholar
Hicks KL, Wisner SR, Cox BC et al (2020) Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hear Res 385:107838. https://doi.org/10.1016/j.heares.2019.107838
Article
CAS
PubMed
Google Scholar
Holley M, Rhodes C, Kneebone A et al (2010) Emx2 and early hair cell development in the mouse inner ear. Dev Biol 340:547–556. https://doi.org/10.1016/j.ydbio.2010.02.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu L, Lu J, Chiang H et al (2016) Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice. J Neurosci 36:9479–9489. https://doi.org/10.1523/JNEUROSCI.2447-15.2016
Article
CAS
PubMed
PubMed Central
Google Scholar
Huh SH, Jones J, Warchol ME et al (2012) Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal. PLoS Biol 10:1–12. https://doi.org/10.1371/journal.pbio.1001231
Article
CAS
Google Scholar
Hume CR, Bratt DL, Oesterle EC (2007) Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr Patterns 7:798–807. https://doi.org/10.1016/j.modgep.2007.05.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito M, Spicer SS, Schulte BA (1995) Cytological changes related to maturation of the organ of Corti and opening of Corti’s tunnel. Hear Res 88:107–123. https://doi.org/10.1016/0378-5955(95)00106-E
Article
CAS
PubMed
Google Scholar
Ivanova A, Signore M, Caro N et al (2005) In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43:129–135. https://doi.org/10.1002/gene.20162
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacques BE, Montcouquiol ME, Layman EM et al (2007) Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea. Development 134:3021–3029. https://doi.org/10.1242/dev.02874
Article
CAS
PubMed
Google Scholar
Jacques BE, Puligilla C, Weichert RM et al (2013) A dual function for canonical Wnt/ -catenin signaling in the developing mammalian cochlea. J Cell Sci 125. https://doi.org/10.1242/jcs.127910
Jen HI, Hill MC, Tao L et al (2019) Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. Elife 8. https://doi.org/10.7554/eLife.44328
Kawamoto K, Ishimoto S-I, Minoda R et al (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23:4395–4400
Article
CAS
PubMed
PubMed Central
Google Scholar
Keithley EM, Erkman L, Bennett T et al (1999) Effects of a hair cell transcription factor, Brn-3.1, gene deletion on homozygous and heterozygous mouse cochleas in adulthood and aging. Hear Res 134:71–76. https://doi.org/10.1016/S0378-5955(99)00070-2
Article
CAS
PubMed
Google Scholar
Kelly MC, Chang Q, Pan A et al (2012) Atoh1 Directs the Formation of Sensory Mosaics and Induces Cell Proliferation in the Postnatal Mammalian Cochlea In Vivo. J Neurosci 32:6699–6710. https://doi.org/10.1523/jneurosci.5420-11.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Kempfle JS, Turban JL, Edge ASB (2016) Sox2 in the differentiation of cochlear progenitor cells. Sci Rep 6:23293. https://doi.org/10.1038/srep23293
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiernan AE, Cordes R, Kopan R et al (2005a) The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 132:4353–4362
Article
CAS
PubMed
Google Scholar
Kiernan AE, Pelling AL, Leung KKHH et al (2005b) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035. https://doi.org/10.1038/nature03487
Article
CAS
PubMed
Google Scholar
Kiernan AE, Xu J, Gridley T (2006) The notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2:27–38. https://doi.org/10.1371/journal.pgen.0020004
Article
CAS
Google Scholar
Kirjavainen A, Sulg M, Heyd F et al (2008) Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia. Dev Biol 322:33–45. https://doi.org/10.1016/j.ydbio.2008.07.004
Article
CAS
PubMed
Google Scholar
Korrapati S, Roux I, Glowatzki E et al (2013) Notch Signaling Limits Supporting Cell Plasticity in the Hair Cell-Damaged Early Postnatal Murine Cochlea. PLoS One 8:e7327. https://doi.org/10.1371/journal.pone.0073276
Article
CAS
Google Scholar
Lanford PJ, Lan Y, Jiang R et al (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Natture 21:289–292
CAS
Google Scholar
Layman WS, Zuo J (2015) Epigenetic regulation in the inner ear and its potential roles in development, protection, and regeneration. Front Cell Neurosci 8:1–11. https://doi.org/10.3389/fncel.2014.00446
Article
Google Scholar
Lee YY-S, Liu F, Segil N (2006) A morphogenetic wave of p27Kip1 transcription directs cell cycle exit during organ of Corti development. Development 133:2817–2826. https://doi.org/10.1242/dev.02453
Article
CAS
PubMed
Google Scholar
Lee S, Song JJ, Beyer LA et al (2020) Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea. Sci Rep 10:1–15. https://doi.org/10.1038/s41598-020-78167-8
Article
CAS
Google Scholar
Leonova EV, Raphael Y (1997) Organization of cell junctions and cytoskeleton in the reticular lamina in normal and ototoxically damaged organ of Corti. Hear Res 113:14–28. https://doi.org/10.1016/S0378-5955(97)00130-5
Article
CAS
PubMed
Google Scholar
Li S, Mark S, Radde-Gallwitz K et al (2008) Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development. BMC Dev Biol 8:20. https://doi.org/10.1186/1471-213X-8-20
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Wu J, Yang J et al (2015) Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci 112:166–171. https://doi.org/10.1073/pnas.1415901112
Article
CAS
PubMed
Google Scholar
Lin V, Golub JS, Nguyen TB et al (2011) Inhibition of notch activity promotes nonmitotic regeneration of hair cells in the adult mouse utricles. J Neurosci 31:15329–15339. https://doi.org/10.1523/JNEUROSCI.2057-11.2011
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Dearman JA, Cox BC et al (2012a) Age-dependent in vivo conversion of mouse cochlear pillar and Deiters’ cells to immature hair cells by Atoh1 ectopic expression. J Neurosci 32:6600–6610. https://doi.org/10.1523/JNEUROSCI.0818-12.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Owen T, Fang J et al (2012b) In vivo notch reactivation in differentiating cochlear hair cells induces sox2 and prox1 expression but does not disrupt hair cell maturation. Dev Dyn. https://doi.org/10.1002/dvdy.23754
Liu Z, Owen T, Fang J et al (2012c) Overactivation of notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One. https://doi.org/10.1371/journal.pone.0034123
Liu Z, Fang J, Dearman J et al (2014) In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS One 9:e89377. https://doi.org/10.1371/journal.pone.0089377
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowenheim H, Furness DN, Kil J et al (1999) Gene disruption of p27Kip1 allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci 96:4084–4088. https://doi.org/10.1073/pnas.96.7.4084
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo X et al (2013) GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Hum Mol Genet 22:3609–3623. https://doi.org/10.1093/hmg/ddt212
Article
CAS
PubMed
PubMed Central
Google Scholar
Lush ME, Piotrowski T (2014) Sensory hair cell regeneration in the zebrafish lateral line. Dev. Dyn. 243:1187–1202
Article
PubMed
PubMed Central
Google Scholar
Maass JC, Gu R, Basch ML et al (2015) Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci 9:110. https://doi.org/10.3389/fncel.2015.00110
Article
CAS
PubMed
PubMed Central
Google Scholar
Mall M, Wernig M (2017) The novel tool of cell reprogramming for applications in molecular medicine. J. Mol, Med
Book
Google Scholar
Mansour SL, Li C, Urness LD (2013) Genetic rescue of Muenke syndrome model hearing loss reveals prolonged FGF-dependent plasticity in cochlear supporting cell fates. Genes Dev 27:2320–2331. https://doi.org/10.1101/gad.228957.113
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantela J, Jiang Z, Ylikoski J et al (2005) The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear. Development 132:2377–2388. https://doi.org/10.1242/dev.01834
Article
CAS
PubMed
Google Scholar
Masuda M, Pak K, Chavez E et al (2012) TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol 372:68–80. https://doi.org/10.1016/j.ydbio.2012.09.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Matern MS, Milon B, Lipford EL et al (2020) GFI1 functions to repress neuronal gene expression in the developing inner ear hair cells. Development 147:0–8. https://doi.org/10.1242/dev.186015
Article
CAS
Google Scholar
McGovern MM, Brancheck J, Grant AC et al (2017) Quantitative Analysis of Supporting Cell Subtype Labeling Among CreER Lines in the Neonatal Mouse Cochlea. J Assoc Res Otolaryngol 18:227–245. https://doi.org/10.1007/s10162-016-0598-0
Article
PubMed
Google Scholar
McGovern MM, Zhou L, Randle MR et al (2018) Spontaneous Hair Cell Regeneration Is Prevented by Increased Notch Signaling in Supporting Cells. Front Cell Neurosci 12:1–17. https://doi.org/10.3389/fncel.2018.00120
Article
CAS
Google Scholar
McGovern MM, Randle MR, Cuppini CL et al (2019) Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 146:dev171009. https://doi.org/10.1242/DEV.171009
Article
CAS
PubMed
PubMed Central
Google Scholar
Mellado Lagarde MM, Cox BC, Fang J et al (2013) Selective Ablation of Pillar and Deiters’ Cells Severely Affects Cochlear Postnatal Development and Hearing in Mice. J Neurosci 33:1564–1576. https://doi.org/10.1523/JNEUROSCI.3088-12.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikaelian D, Ruben RJ (1965) Development of hearing in the normal cba-j mouse: Correlation of physiological observations with behavioral responses and with cochlear anatomy. Acta Otolaryngol 59:451–461. https://doi.org/10.3109/00016486509124579
Article
Google Scholar
Mizutari K, Fujioka M, Hosoya M et al (2013) Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma. Neuron 77:58–69. https://doi.org/10.1016/j.neuron.2012.10.032
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison A, Hodgetts C, Gossler A et al (1999) Expression of Delta1 and Serrate1 (Jagged 1) in the mouse inner ear. Mech Dev 84:169–172. https://doi.org/10.1016/S0925-4773(99)00066-0
Article
CAS
PubMed
Google Scholar
Munnamalai V, Fekete DM (2016) Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse cochlea in a spatiotemporal manner. Development 143:4003–4015. https://doi.org/10.1242/dev.139469
Article
CAS
PubMed
PubMed Central
Google Scholar
Murata J, Ohtsuka T, Tokunaga A et al (2009) Notch-Hes1 pathway contributes to the cochlear prosensory formation potentially through the transcriptional down-regulation of p27Kip1. J Neurosci Res. https://doi.org/10.1002/jnr.22169
Nakai Y, Konishi K, Chang KC et al (1982) Ototoxicity of the anticancer drug cisplatin. An experimental study. Acta Otolaryngol 93:227–232. https://doi.org/10.3109/00016488209130876
Article
CAS
PubMed
Google Scholar
Neves J, Parada C, Chamizo M et al (2011) Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: A mechanism for sensory organ specification. Development 138:735–744. https://doi.org/10.1242/dev.060657
Article
CAS
PubMed
Google Scholar
Neves J, Uchikawa M, Bigas A et al (2012) The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Aoh1. PLoS One 7. https://doi.org/10.1371/journal.pone.0030871
Neves J, Vachkov I, Giraldez F (2013) Sox2 regulation of hair cell development: Incoherence makes sense. Hear Res 297:20–29. https://doi.org/10.1016/j.heares.2012.11.003
Article
CAS
PubMed
Google Scholar
Ni W, Zeng S, Li W et al (2016) Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget 7:66754–66768. https://doi.org/10.18632/oncotarget.11479
Article
PubMed
PubMed Central
Google Scholar
Oesterle EC, Campbell S, Taylor RR et al (2008) Sox2 and Jagged1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89. https://doi.org/10.1007/s10162-007-0106-7
Article
PubMed
Google Scholar
Ohyama T, Basch ML, Mishina Y, Lyons KM, Segil N, Groves AK. (2010) BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J Neurosci 10;30(45):15044–15051. https://doi.org/10.1523/J
Google Scholar
Ong CT, Cheng HT, Chang LW et al (2006) Target selectivity of vertebrate notch proteins: Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J Biol Chem. https://doi.org/10.1074/jbc.M506108200
Ou HC, Bohne BA, Harding GW (2000) Noise damage in the C57BL/CBA mouse cochlea. Hear Res 145:111–122. https://doi.org/10.1016/S0378-5955(00)00081-2
Article
CAS
PubMed
Google Scholar
Pan W, Jin Y, Chen J et al (2013) Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci 33:16146–16157. https://doi.org/10.1523/JNEUROSCI.3150-12.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrovic J, Formosa-Jordan P, Luna-Escalante JC et al (2014) Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development 141:2313–2324. https://doi.org/10.1242/dev.108100
Article
CAS
PubMed
Google Scholar
Puligilla C, Kelley MW (2017) Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function. Dev Neurobiol 77:3–13. https://doi.org/10.1002/dneu.22401
Article
CAS
PubMed
Google Scholar
Raft S, Groves AK (2015) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 100:130–134. https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations
Article
Google Scholar
Ren H, Guo W, Liu W et al (2016) DAPT mediates atoh1 expression to induce hair cell-like cells. Am J Transl Res 8:634–643
CAS
PubMed
PubMed Central
Google Scholar
Rubel EW, Furrer SA, Stone JS (2013) A brief history of hair cell regeneration research and speculations on the future. Hear Res 297:42–51. https://doi.org/10.1016/j.heares.2012.12.014
Article
PubMed
PubMed Central
Google Scholar
Ryals B, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240:1774–1776
Article
CAS
PubMed
Google Scholar
Samarajeewa A, Lenz DR, Xie L et al (2018) Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Development 145:dev166579. https://doi.org/10.1242/dev.166579
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheth S, Mukherjea D, Rybak LP et al (2017) Mechanisms of Cisplatin-Induced Ototoxicity and Otoprotection. Front Cell Neurosci 11:1–12. https://doi.org/10.3389/fncel.2017.00338
Article
CAS
Google Scholar
Shi F, Cheng YF, Wang XL et al (2010) β-Catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3′ enhancer. J Biol Chem 285:392–400. https://doi.org/10.1074/jbc.M109.059055
Article
CAS
PubMed
Google Scholar
Shi F, Kempfle JS, Edge ASB (2012) Wnt-Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea. J Neurosci 32:9639–9648. https://doi.org/10.1523/JNEUROSCI.1064-12.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi F, Hu L, Edge ASB (2013) Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci USA 110:13851–13856. https://doi.org/10.1073/pnas.1219952110
Article
PubMed
PubMed Central
Google Scholar
Shi F, Hu L, Jacques BE et al (2014) Beta-Catenin Is Required for Hair-Cell Differentiation in the Cochlea. J Neurosci 34:6470–6479. https://doi.org/10.1523/JNEUROSCI.4305-13.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Shim K, Minowada G, Coling DE et al (2005) Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell 8:553–564. https://doi.org/10.1016/j.devcel.2005.02.009
Article
CAS
PubMed
Google Scholar
Shu Y, Li W, Huang M et al (2019) Renewed proliferation in adult mouse cochlea and regeneration of hair cells. Nat Commun 10:1–15. https://doi.org/10.1038/s41467-019-13157-7
Article
CAS
Google Scholar
Slepecky NB, Ulfendahl M (1992) Actin-binding and microtubule-associated proteins in the organ of Corti. Hear Res 57:201–215. https://doi.org/10.1016/0378-5955(92)90152-D
Article
CAS
PubMed
Google Scholar
Spicer SS, Smythe N, Schulte BA (1999) Distribution of Canalicular reticulum in Deiters cells and pillar cells of gerbil cochlea. Hear Res 130:7–18. https://doi.org/10.1016/S0378-5955(98)00202-0
Article
CAS
PubMed
Google Scholar
Stojanova ZP, Kwan T, Segil N (2015) Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea. Development 142:1632–1632. https://doi.org/10.1242/dev.137976
Article
CAS
Google Scholar
Stone JS, Cotanche DA (2007) Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol 51:633–647. https://doi.org/10.1387/ijdb.072408js
Article
CAS
PubMed
Google Scholar
Sun S, Li S, Luo Z et al (2021) Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells. Elife 10:52921793
Article
Google Scholar
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024
Article
CAS
PubMed
Google Scholar
Tanabe K, Haag D, Wernig M (2015) Direct somatic lineage conversion. Philos. Trans. R. Soc. B Biol, Sci
Book
Google Scholar
Tao L, Yu HV, Llamas J et al (2021) Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration. Dev Cell 56:2471–2485. https://doi.org/10.1016/j.devcel.2021.07.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Tateya T, Imayoshi I, Tateya I et al (2011) Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol 352:329–340. https://doi.org/10.1016/j.ydbio.2011.01.038
Article
CAS
PubMed
Google Scholar
Tateya T, Imayoshi I, Tateya I et al (2013) Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea. Development 140:3848–3857. https://doi.org/10.1242/dev.095398
Article
CAS
PubMed
Google Scholar
Tateya T, Sakamoto S, Imayoshi I et al (2015) In vivo overactivation of the Notch signaling pathway in the developing cochlear epithelium. Hear Res 327:209–217. https://doi.org/10.1016/j.heares.2015.07.012
Article
CAS
PubMed
Google Scholar
Tong L, Strong MK, Kaur T et al (2015) Selective Deletion of Cochlear Hair Cells Causes Rapid Age-Dependent Changes in Spiral Ganglion and Cochlear Nucleus Neurons. J Neurosci 35:7878–7891. https://doi.org/10.1523/JNEUROSCI.2179-14.2015
Article
CAS
PubMed
PubMed Central
Google Scholar
Waddington CH (1957) The Strategy of the Genes. George Allen & Unwin Ltd.
Google Scholar
Wallis D, Hamblen M, Koen YZ et al (2002) The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130:221–232. https://doi.org/10.1242/dev.00190
Article
CAS
Google Scholar
Walters BJ, Coak E, Dearman J et al (2017) In Vivo Interplay between p27Kip1, GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. Cell Rep 19:307–320. https://doi.org/10.1016/j.celrep.2017.03.044
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan G, Corfas G, Stone JS (2012) Inner ear supporting cells: Rethinking the silent majority. Semin Cell Dev Biol 24:265–275. https://doi.org/10.1007/s10955-011-0269-9.Quantifying
Article
Google Scholar
Waqas M, Guo L, Zhang S et al (2016) Characterization of Lgr5+ progenitor cell transcriptomes in the apical and basal turns of the mouse cochlea. Oncotarget 7:41123–41141. https://doi.org/10.18632/oncotarget.8636
Article
PubMed
PubMed Central
Google Scholar
Williams SE, Zenner HP, Schacht J (1987) Three molecular steps of aminoglycoside ototoxicity demonstrated in outer hair cells. Hear Res 30:11–18. https://doi.org/10.1016/0378-5955(87)90177-8
Article
CAS
PubMed
Google Scholar
Wiwatpanit T, Lorenzen SM, Cantu JA et al (2018) Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. Nature 563:691–695. https://doi.org/10.1038/s41586-018-0570-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Woods C, Montcouquiol M, Kelley MW (2004) Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci. https://doi.org/10.1038/nn1349
Xiang M, Gao WQ, Hasson T et al (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125:3935–3946
Article
CAS
PubMed
Google Scholar
Xie WR, Jen H-I, Seymour ML et al (2017) An Atoh1-S193A Phospho-Mutant Allele Causes Hearing Deficits and Motor Impairment. J Neurosci. https://doi.org/10.1523/jneurosci.0295-17.2017
Yamamoto N, Tanigaki K, Tsuji M et al (2006) Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med 84:37–45. https://doi.org/10.1007/s00109-005-0706-9
Article
CAS
PubMed
Google Scholar
Yang J, Yoshizawa K, Shikata N et al (2003) Retinal damage induced by cisplatin in neonatal rats and mice. Curr Eye Res. https://doi.org/10.1076/0271-3683(200006)20:6;1-y;ft441
Yang H, Xie X, Deng M et al (2010) Generation and characterization of Atoh1-Cre knock-in mouse line. Genesis. https://doi.org/10.1002/dvg.20633
Yu HV, Tao L, Llamas J et al (2021) POU4F3 pioneer activity enables ATOH1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2105137118
Zhao Y, Wang Y, Wang Z et al (2006) Sonic hedgehog promotes mouse inner ear progenitor cell proliferation and hair cell generation in vitro. Neuroreport 17:121–124
Article
CAS
PubMed
Google Scholar
Zheng JL, Shou J, Guillemot F et al (2000) Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560
Article
CAS
PubMed
Google Scholar
Zine A, Aubert A, Qiu J et al (2001) Hes1 and Hes5 Activities Are Required for the Normal Development of the Hair Cells in the Mammalian Inner Ear. J Neurosci 21:4712–4720
Article
CAS
PubMed
PubMed Central
Google Scholar