Privacy impact assessment (pia)—cnil. https://www.cnil.fr/en/privacy-impact-assessment-pia. Accessed 23 Jan 2023
Alaqra, A.S., Fischer-Hübner, S., Framner, E.: Enhancing privacy controls for patients via a selective authentic electronic health record exchange service: qualitative study of perspectives by medical professionals and patients. J. Med. Internet Res. 20(12), e10954 (2018).
Google Scholar
Alaqra, A.S., Kane, B., Fischer-Hübner, S.: Machine learning-based analysis of encrypted medical data in the cloud: qualitative study of expert stakeholders’ perspectives. JMIR Hum. Factors 8(3), e21810 (2021).
Google Scholar
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Bozdemir, B., et al.: D3.3 complete specification and implementation of privacy preserving data analytics—Papaya (2020). https://www.papaya-project.eu/node/157
Bozdemir, B., et al.: D4.3 final report on platform implementation and PETs integration—Papaya (2021). https://www.papaya-project.eu/node/161
Camenisch, J., et al.: Trust in prime. In: Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005, pp. 552–559. IEEE (2005)
Google Scholar
Cavoukian, A.: Privacy by design, take the challenge (2009)
Google Scholar
Cavoukian, A.: Privacy by design in law, policy and practice (2011)
Google Scholar
Clarke, R.: Privacy impact assessments. Xamax Consultancy Pty Ltd. (1998)
Google Scholar
Clarke, R.: Privacy impact assessment: its origins and development. Comput. Law Secur. Rev. 25(2), 123–135 (2009).
Google Scholar
Demjaha, A., Spring, J.M., Becker, I., Parkin, S., Sasse, M.A.: Metaphors considered harmful? an exploratory study of the effectiveness of functional metaphors for end-to-end encryption. In: Proceedings of the USEC, vol. 2018. Internet Society (2018)
Google Scholar
EU-GDPR: Article 35 EU general data protection regulation. Data protection impact assessment. (2022). https://gdpr-info.eu/art-35-gdpr/
Simone, F.-H., et al.: D3.4 transparent privacy preserving data analytics (2021). https://www.papaya-project.eu
Heurix, J., Zimmermann, P., Neubauer, T., Fenz, S.: A taxonomy for privacy enhancing technologies. Comput. Secur. 53, 1–17 (2015).
Google Scholar
Karegar, F., Alaqra, A.S., Fischer-Hübner, S.: Exploring \(\{\)User-Suitable\(\}\) metaphors for differentially private data analyses. In: Eighteenth Symposium on Usable Privacy and Security (SOUPS 2022), pp. 175–193 (2022)
Google Scholar
Khare, R.: Privacy theater: why social networks only pretend to protect you (2022). https://techcrunch.com/2009/12/27/privacy-theater/
Murmann, P., Fischer-Hübner, S.: Tools for achieving usable ex post transparency: a survey. IEEE Access 5, 22965–22991 (2017).
Google Scholar
Nanayakkara, P., Bater, J., He, X., Hullman, J., Rogers, J.: Visualizing privacy-utility trade-offs in differentially private data releases. Proc. Priv. Enhancing Technol. 2022(2), 601–618 (2022).
Google Scholar