Skip to main content

Prefrontal Control of Actions and Habits

  • Chapter
  • First Online:
Habits
  • 585 Accesses

Abstract

Habits help to reduce cognitive load and free up resources required for dynamic goal-directed decisions. The prefrontal cortex has been largely implicated in the latter, but cortical manipulations have also helped to unravel important features about how habits and goal-directed systems co-exist. This chapter will focus on the role of the prefrontal cortex in the control of instrumental actions in rodents. First, we will outline how habits and goal-directed actions are defined and operationalized. Then the role of key subregions within the cortex will be discussed, including the prelimbic cortex (PL), infralimbic cortex (IL), anterior cingulate cortex (ACC), insular cortex (IC) and orbitofrontal cortex (OFC). The purpose of this chapter is to highlight the role of these regions in habits; however, given the interrelatedness of habits with goal-directed actions, a discussion of function across these behaviours is necessary. Overall, this chapter will provide insight into the different roles cortical regions play in the acquisition and performance of instrumental responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, C. D., & Dickinson, A. (2018). Instrumental responding following reinforcer devaluation. The Quarterly Journal of Experimental Psychology Section B, 33, 109–121.

    Article  Google Scholar 

  • Akam, T., Rodrigues-Vaz, I., Marcelo, I., Zhang, X., Pereira, M., Oliveira, R. F., Dayan, P., & Costa, R. M. (2021). The anterior Cingulate Cortex predicts future states to mediate model-based action selection. Neuron, 109, 149–163 e7.

    Article  PubMed  Google Scholar 

  • Alcaraz, F., Marchand, A. R., Vidal, E., Guillou, A., Faugere, A., Coutureau, E., & Wolff, M. (2015). Flexible use of predictive Cues beyond the orbitofrontal cortex: Role of the Submedius Thalamic nucleus. The Journal of Neuroscience, 35, 13183–13193.

    Article  CAS  PubMed  Google Scholar 

  • Baker, P. M., & Ragozzino, M. E. (2014). Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching. Learning & Memory, 21, 368–379.

    Article  Google Scholar 

  • Balleine, B. W. (2005). Neural bases of food-seeking: Affect, arousal and reward in corticostriatolimbic circuits. Physiology & Behavior, 86, 717–730.

    Article  CAS  Google Scholar 

  • Balleine, B. W. (2019). The meaning of behavior: Discriminating reflex and volition in the brain. Neuron, 104, 47–62.

    Article  CAS  PubMed  Google Scholar 

  • Balleine, B. W., & Dezfouli, A. (2019). Hierarchical action control: Adaptive collaboration between actions and habits. Frontiers in Psychology, 10, 2735.

    Article  PubMed  Google Scholar 

  • Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37, 407–419.

    Article  CAS  PubMed  Google Scholar 

  • Balleine, B. W., & Dickinson, A. (2000). The effect of lesions of the insular cortex on instrumental conditioning: Evidence for a role in incentive memory. The Journal of Neuroscience, 20, 8954–8964.

    Article  CAS  PubMed  Google Scholar 

  • Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35, 48–69.

    Article  PubMed  Google Scholar 

  • Balleine, B. W., Leung, B. K., & Ostlund, S. B. (2011). The orbitofrontal cortex, predicted value, and choice. Annals of the New York Academy of Sciences, 1239, 43–50.

    Article  PubMed  Google Scholar 

  • Baltz, E. T., Yalcinbas, E. A., Renteria, R., & Gremel, C. M. (2018). Orbital frontal cortex updates state-induced value change for decision-making. eLife, 7, e35988.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker, J. M., Glen, W. B., Linsenbardt, D. N., Lapish, C. C., & Chandler, L. J. (2017). Habitual behavior is mediated by a shift in response-outcome encoding by Infralimbic Cortex. eNeuro, 4, ENEURO.0337-17.2017.

    Article  PubMed  Google Scholar 

  • Bouton, M. E., & Balleine, B. W. (2019). Prediction and control of operant behavior: What you see is not all there is. Behavior Analysis (Wash D C), 19, 202–212.

    Google Scholar 

  • Bradfield, L. A., & Hart, G. (2020). Rodent medial and lateral orbitofrontal cortices represent unique components of cognitive maps of task space. Neuroscience and Biobehavioral Reviews, 108, 287–294.

    Article  PubMed  Google Scholar 

  • Bradfield, L. A., Dezfouli, A., Van Holstein, M., Chieng, B., & Balleine, B. W. (2015). Medial orbitofrontal cortex mediates outcome retrieval in partially observable task situations. Neuron, 88, 1268–1280.

    Article  CAS  PubMed  Google Scholar 

  • Bradfield, L. A., Hart, G., & Balleine, B. W. (2018). Inferring action-dependent outcome representations depends on anterior but not posterior medial orbitofrontal cortex. Neurobiology of Learning and Memory, 155, 463–473.

    Article  PubMed  Google Scholar 

  • Carlen, M. (2017). What constitutes the prefrontal cortex? Science, 358, 478–482.

    Article  CAS  PubMed  Google Scholar 

  • Cerpa, J. C., Coutureau, E., & Parkes, S. L. (2021). Dopamine and noradrenaline modulation of goal-directed behavior in orbital and medial prefrontal cortex: Toward a division of labor? Behavioral Neuroscience, 135, 138–153.

    Article  CAS  PubMed  Google Scholar 

  • Christakou, A., Robbins, T. W., & Everitt, B. J. (2001). Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: Implications for attentional function. Behavioral Neuroscience, 115, 812–825.

    Article  CAS  PubMed  Google Scholar 

  • Corbit, L. H., & Balleine, B. W. (2003). The role of prelimbic cortex in instrumental conditioning. Behavioural Brain Research, 146, 145–157.

    Article  PubMed  Google Scholar 

  • Coutureau, E., & Killcross, S. (2003). Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behavioural Brain Research, 146, 167–174.

    Article  PubMed  Google Scholar 

  • Coutureau, E., & Parkes, S. L. (2018). Chapter 8 - Cortical determinants of goal-directed behavior. Academic Press.

    Google Scholar 

  • Coutureau, E., Esclassan, F., Di Scala, G., & Marchand, A. R. (2012). The role of the rat medial prefrontal cortex in adapting to changes in instrumental contingency. PLoS One, 7, e33302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews, 28, 771–784.

    Article  CAS  PubMed  Google Scholar 

  • Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, A. (1985). Actions and habits-the development of behavioural autonomy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 308, 67–78.

    Google Scholar 

  • Dickinson, A. (1994). Instrumental conditioning. In Animal learning and cognition (pp. 45–79). Academic Press.

    Chapter  Google Scholar 

  • Dickinson, A., & Balleine, B. (1994). Motivational control of goal-directed action. Animal Learning & Behavior, 22, 1–18.

    Article  Google Scholar 

  • Gardner, M. P. H., Conroy, J. S., Shaham, M. H., Styer, C. V., & Schoenbaum, G. (2017). Lateral orbitofrontal inactivation dissociates devaluation-sensitive behavior and economic choice. Neuron, 96(1192–1203), e4.

    Google Scholar 

  • Gourley, S. L., Olevska, A., Zimmermann, K. S., Ressler, K. J., Dileone, R. J., & Taylor, J. R. (2013). The orbitofrontal cortex regulates outcome-based decision-making via the lateral striatum. The European Journal of Neuroscience, 38, 2382–2388.

    Article  PubMed  Google Scholar 

  • Gourley, S. L., Zimmermann, K. S., Allen, A. G., & Taylor, J. R. (2016). The medial orbitofrontal cortex regulates sensitivity to outcome value. The Journal of Neuroscience, 36, 4600–4613.

    Article  CAS  PubMed  Google Scholar 

  • Gremel, C. M., & Costa, R. M. (2013). Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nature Communications, 4, 2264.

    Article  PubMed  Google Scholar 

  • Gremel, C. M., Chancey, J. H., Atwood, B. K., Luo, G., Neve, R., Ramakrishnan, C., Deisseroth, K., Lovinger, D. M., & Costa, R. M. (2016). Endocannabinoid modulation of orbitostriatal circuits gates habit formation. Neuron, 90, 1312–1324.

    Article  CAS  PubMed  Google Scholar 

  • Haddon, J. E., & Killcross, S. (2011). Inactivation of the infralimbic prefrontal cortex in rats reduces the influence of inappropriate habitual responding in a response-conflict task. Neuroscience, 199, 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, L. J. (1980). The effect of contingency upon the appetitive conditioning of free-operant behavior. Journal of the Experimental Analysis of Behavior, 34, 297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart, G., & Balleine, B. W. (2016). Consolidation of goal-directed action depends on MAPK/ERK signaling in Rodent Prelimbic Cortex. The Journal of Neuroscience, 36, 11974–11986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart, E. E., Gerson, J. O., Zoken, Y., Garcia, M., & Izquierdo, A. (2017). Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option. The European Journal of Neuroscience, 46, 1682–1688.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart, G., Bradfield, L. A., & Balleine, B. W. (2018a). Prefrontal Corticostriatal disconnection blocks the acquisition of goal-directed action. The Journal of Neuroscience, 38, 1311–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart, G., Bradfield, L. A., Fok, S. Y., Chieng, B., & Balleine, B. W. (2018b). The bilateral Prefronto-striatal pathway is necessary for learning new goal-directed actions. Current Biology, 28(2218–2229), e7.

    Google Scholar 

  • Heilbronner, S. R., Rodriguez-Romaguera, J., Quirk, G. J., Groenewegen, H. J., & Haber, S. N. (2016). Circuit-based Corticostriatal homologies between rat and primate. Biological Psychiatry, 80, 509–521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hervig, M. E., Fiddian, L., Piilgaard, L., Bozic, T., Blanco-Pozo, M., Knudsen, C., Olesen, S. F., Alsio, J., & Robbins, T. W. (2020). Dissociable and paradoxical roles of rat medial and lateral orbitofrontal cortex in visual serial reversal learning. Cerebral Cortex, 30, 1016–1029.

    Article  CAS  PubMed  Google Scholar 

  • Hilario, M., Holloway, T., Jin, X., & Costa, R. M. (2012). Different dorsal striatum circuits mediate action discrimination and action generalization. The European Journal of Neuroscience, 35, 1105–1114.

    Article  PubMed  Google Scholar 

  • Hitchcott, P. K., Quinn, J. J., & Taylor, J. R. (2007). Bidirectional modulation of goal-directed actions by prefrontal cortical dopamine. Cerebral Cortex, 17, 2820–2827.

    Article  PubMed  Google Scholar 

  • Hoover, W. B., & Vertes, R. P. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure & Function, 212, 149–179.

    Article  Google Scholar 

  • Izquierdo, A. (2017). Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. The Journal of Neuroscience, 37, 10529–10540.

    Article  CAS  PubMed  Google Scholar 

  • James, W. (1890). The principles of psychology (Vol. I). US, Henry Holt and Co.

    Google Scholar 

  • Jonkman, S., Mar, A. C., Dickinson, A., Robbins, T. W., & Everitt, B. J. (2009). The rat prelimbic cortex mediates inhibitory response control but not the consolidation of instrumental learning. Behavioral Neuroscience, 123, 875–885.

    Article  PubMed  Google Scholar 

  • Killcross, S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13, 400–408.

    Article  PubMed  Google Scholar 

  • Kupferschmidt, D. A., Juczewski, K., Cui, G., Johnson, K. A., & Lovinger, D. M. (2017). Parallel, but dissociable, processing in discrete Corticostriatal inputs encodes skill learning. Neuron, 96, 476–489 e5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laubach, M., Amarante, L. M., Swanson, K., & White, S. R. (2018). What, if anything, is rodent prefrontal cortex? eNeuro, 5, ENEURO.0315-18.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lingawi, N. W., Dezfouli, A., & Balleine, B. W. (2016). The psychological and physiological mechanisms of habit formation. In The Wiley handbook on the cognitive neuroscience of learning. Wiley-Blackwell.

    Google Scholar 

  • Mailly, P., Aliane, V., Groenewegen, H. J., Haber, S. N., & Deniau, J. M. (2013). The rat prefrontostriatal system analyzed in 3D: Evidence for multiple interacting functional units. The Journal of Neuroscience, 33, 5718–5727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquis, J. P., Killcross, S., & Haddon, J. E. (2007). Inactivation of the prelimbic, but not infralimbic, prefrontal cortex impairs the contextual control of response conflict in rats. The European Journal of Neuroscience, 25, 559–566.

    Article  PubMed  Google Scholar 

  • Miller, K. J., Botvinick, M. M., & Brody, C. D. (2022). Value representations in the rodent orbitofrontal cortex drive learning, not choice. eLife, 11, e64575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munster, A., & Hauber, W. (2018). Medial orbitofrontal cortex mediates effort-related responding in rats. Cerebral Cortex, 28, 4379–4389.

    Article  PubMed  Google Scholar 

  • Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M., & Turchi, J. (2015). Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. eLife, 4, e11695.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naneix, F., Marchand, A. R., Di Scala, G., Pape, J. R., & Coutureau, E. (2009). A role for medial prefrontal dopaminergic innervation in instrumental conditioning. The Journal of Neuroscience, 29, 6599–6606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206–219.

    Article  CAS  PubMed  Google Scholar 

  • Ostlund, S. B., & Balleine, B. W. (2005). Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. The Journal of Neuroscience, 25, 7763–7770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostlund, S. B., & Balleine, B. W. (2007). Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. The Journal of Neuroscience, 27, 4819–4825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostlund, S. B., Winterbauer, N. E., & Balleine, B. W. (2009). Evidence of action sequence chunking in goal-directed instrumental conditioning and its dependence on the dorsomedial prefrontal cortex. The Journal of Neuroscience, 29, 8280–8287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panayi, M. C., & Killcross, S. (2018). Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits. eLife, 7, e37357.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkes, S. L., & Balleine, B. W. (2013). Incentive memory: Evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions. The Journal of Neuroscience, 33, 8753–8763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes, S. L., Bradfield, L. A., & Balleine, B. W. (2015). Interaction of insular cortex and ventral striatum mediates the effect of incentive memory on choice between goal-directed actions. The Journal of Neuroscience, 35, 6464–6471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes, S. L., Ferreira, G., & Coutureau, E. (2016a). Acquisition of specific response-outcome associations requires NMDA receptor activation in the basolateral amygdala but not in the insular cortex. Neurobiology of Learning and Memory, 128, 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Parkes, S. L., Marchand, A. R., Ferreira, G., & Coutureau, E. (2016b). A time course analysis of satiety-induced instrumental outcome devaluation. Learning & Behavior, 44, 347–355.

    Article  Google Scholar 

  • Parkes, S. L., Ravassard, P. M., Cerpa, J. C., Wolff, M., Ferreira, G., & Coutureau, E. (2018). Insular and ventrolateral orbitofrontal cortices differentially contribute to goal-directed behavior in rodents. Cerebral Cortex, 28, 2313–2325.

    Article  PubMed  Google Scholar 

  • Paxinos, G., & Watson, C. (2014). Paxino’s and Watson’s the rat brain in stereotaxic coordinates. Elsevier/AP, Academic Press is an imprint of Elsevier.

    Google Scholar 

  • Ragozzino, M. E., Adams, S., & Kesner, R. P. (1998). Differential involvement of the dorsal anterior cingulate and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory. Behavioral Neuroscience, 112, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Robbins, T. W., & Costa, R. M. (2017). Habits. Current Biology, 27, R1200–R1206.

    Article  CAS  PubMed  Google Scholar 

  • Sackett, D. A., Moschak, T. M., & Carelli, R. M. (2019). Prelimbic cortical neurons track preferred reward value and reflect impulsive choice during delay discounting behavior. The Journal of Neuroscience, 39, 3108–3118.

    Article  CAS  PubMed  Google Scholar 

  • Shipman, M. L., Trask, S., Bouton, M. E., & Green, J. T. (2018). Inactivation of prelimbic and infralimbic cortex respectively affects minimally-trained and extensively-trained goal-directed actions. Neurobiology of Learning and Memory, 155, 164–172.

    Article  PubMed  Google Scholar 

  • Smith, K. S., & Graybiel, A. M. (2013). A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron, 79, 361–374.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K. S., & Graybiel, A. M. (2016). Habit formation. Dialogues in Clinical Neuroscience, 18, 33–43.

    Article  PubMed  Google Scholar 

  • Smith, K. S., Virkud, A., Deisseroth, K., & Graybiel, A. M. (2012). Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 109, 18932–18937.

    Article  CAS  PubMed  Google Scholar 

  • St Onge, J. R., & Floresco, S. B. (2010). Prefrontal cortical contribution to risk-based decision making. Cerebral Cortex, 20, 1816–1828.

    Article  PubMed  Google Scholar 

  • Takahashi, Y. K., Roesch, M. R., Stalnaker, T. A., Haney, R. Z., Calu, D. J., Taylor, A. R., Burke, K. A., & Schoenbaum, G. (2009). The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron, 62, 269–280.

    Article  CAS  PubMed  Google Scholar 

  • Thrailkill, E. A., Trask, S., Vidal, P., Alcala, J. A., & Bouton, M. E. (2018). Stimulus control of actions and habits: A role for reinforcer predictability and attention in the development of habitual behavior. The Journal of Experimental Psychology: Animal Learning and Cognition, 44, 370–384.

    PubMed  Google Scholar 

  • Tran-Tu-Yen, D. A., Marchand, A. R., Pape, J. R., Di Scala, G., & Coutureau, E. (2009). Transient role of the rat prelimbic cortex in goal-directed behaviour. The European Journal of Neuroscience, 30, 464–471.

    Article  PubMed  Google Scholar 

  • Turner, K. M., & Parkes, S. L. (2020). Prefrontal regulation of behavioural control: Evidence from learning theory and translational approaches in rodents. Neuroscience and Biobehavioral Reviews, 118, 27–41.

    Article  PubMed  Google Scholar 

  • Turner, K. M., Svegborn, A., Langguth, M., Mckenzie, C., & Robbins, T. W. (2022). Opposing roles of the dorsolateral and dorsomedial striatum in the Acquisition of Skilled Action Sequencing in rats. The Journal of Neuroscience, 42, 2039–2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Heukelum, S., Mars, R. B., Guthrie, M., Buitelaar, J. K., Beckmann, C. F., Tiesinga, P. H. E., Vogt, B. A., Glennon, J. C., & Havenith, M. N. (2020). Where is Cingulate Cortex? A cross-species view. Trends in Neurosciences, 43, 285–299.

    Article  PubMed  Google Scholar 

  • Vandaele, Y., & Janak, P. H. (2021). Unveiling the neural correlates of habit in the dorsal striatum. bioRxiv, 2021.04.03.438314.

    Google Scholar 

  • Vandaele, Y., Mahajan, N. R., Ottenheimer, D. J., Richard, J. M., Mysore, S. P., & Janak, P. H. (2019). Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. eLife, 8, e49536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vertes, R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51, 32–58.

    Article  CAS  PubMed  Google Scholar 

  • Walton, M. E., Bannerman, D. M., Alterescu, K., & Rushworth, M. F. (2003). Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. The Journal of Neuroscience, 23, 6475–6479.

    Article  CAS  PubMed  Google Scholar 

  • Watson, P., O’Callaghan, C., Perkes, I., Bradfield, L., & Turner, K. (2022). Making habits measurable beyond what they are not: A focus on associative dual-process models. Neuroscience and Biobehavioral Reviews, 142, 104869.

    Article  PubMed  Google Scholar 

  • Yin, H. H., Mulcare, S. P., Hilario, M. R., Clouse, E., Holloway, T., Davis, M. I., Hansson, A. C., Lovinger, D. M., & Costa, R. M. (2009). Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neuroscience, 12, 333–341.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KMT was supported by a NARSAD Young Investigator Grant from the Brain and Behavior Research Foundation and funding from the National Health and Medical Research Council (GNT2028533).

Competing Interests The author has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karly M. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turner, K.M. (2024). Prefrontal Control of Actions and Habits. In: Vandaele, Y. (eds) Habits. Springer, Cham. https://doi.org/10.1007/978-3-031-55889-4_8

Download citation

Publish with us

Policies and ethics