Skip to main content

Evaluating Real-Time Emotional Responses Using Bullet Screen Sentiment Analysis: Evidence from Electrodermal Activity

  • Conference paper
  • First Online:
HCI International 2024 – Late Breaking Papers (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15375))

Included in the following conference series:

  • 415 Accesses

Abstract

Bullet screens are attracting increasing attention as a way to express emotions and interact on short video platforms. Prior studies have used natural language processing (NLP) to analyze bullet screen sentiment in order to evaluate public opinion trends regarding a specific topic, movie, or product. However, few studies have investigated the effectiveness of using bullet screen sentiment analysis to predict real-time emotional responses. Thus, this study examined whether and to what extent bullet screen sentiment analysis can be used to evaluate and predict real-time emotional responses to videos by employing physiological electrodermal activity (EDA) measurements. A behavioral experiment was conducted in which eight college students wore a set of wireless galvanic skin sensors while watching three music videos (MVs) in random or-der. The participants’ EDA data, including skin conductance responses and peak amplitudes, were then analyzed. Meanwhile, the sentiments expressed in the bullet screen comments on the three MVs were analyzed using three dictionary-based sentiment analysis algorithms: SnowNLP, BosonNLP, and Hel-loNLP. The bullet screen sentiment analysis and physiological measurement results were then compared using descriptive and correlation analyses. The bullet screen sentiment parameters were found to significantly correlate with the EDA measurements. This study confirms the effectiveness of using bullet screen sentiment analysis to predict participants’ real-time emotional responses, providing a convenient and flexible way for enterprises and governments to detect public opinion trends and take action accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 79.17
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaplan, A.M., Haenlein, M.: Users of the world, unite! the challenges and opportunities of social media. Bus. Horiz. 53(1), 59–68 (2010). https://doi.org/10.1016/j.bushor.2009.09.003

    Article  Google Scholar 

  2. Lin, B., Chen, Y., Zhang, L.: Research on the factors influencing the repurchase intention on short video platforms: a case of China. Plos One 17(3) (2022). https://doi.org/10.1371/journal.pone.0265090

  3. China Internet Network Information Center (CNNIC). The 52nd Statistical Report on China’s Internet Development (2023). https://www.cnnic.com.cn/IDR/ReportDownloads/202311/P020231121355042476714.pdf

  4. Djamasbi, S., Hall-Phillips, A., Liu, Z., Li, W., Bian, J.: Social viewing, bullet screen, and user experience: a first look. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 648–657. IEEE (2016)

    Google Scholar 

  5. Yadollahi, A., Shahraki, A.G., Zaiane, O.R.: Current state of text sentiment analysis from opinion to emotion mining. ACM Comput. Surv. 50(2), 1–33 (2018). https://doi.org/10.1145/3057270

    Article  Google Scholar 

  6. Sun, S., Wang, F., He, L.: Movie summarization using bullet screen comments. Multimedia Tools Appl. 77, 9093–9110 (2018)

    Article  Google Scholar 

  7. Saberi, B., Saad, S.: Sentiment analysis or opinion mining: a review. Int. J. Adv. Sci. Eng. Inf. Technol. 7(5), 1660–1666 (2017)

    Article  Google Scholar 

  8. Zhu, B.: Video bullet screen filtering method and device. LCN201510628104.1 (2015)

    Google Scholar 

  9. Yang, X., Binglu, W., Junjie, H., Shuwen, L.: Natural language processing in “Bullet Screen” application. In: 2017 International Conference on Service Systems and Service Management, pp. 1–6. IEEE (2017)

    Google Scholar 

  10. Gupta, A., Tyagi, M., Sharma, D.: Use of social media marketing in healthcare. J. Health Manag. 15(2), 293–302 (2013). https://doi.org/10.1177/0972063413489058

    Article  Google Scholar 

  11. Fersini, E.: Sentiment analysis in social networks: a machine learning perspective. In: Sentiment Analysis in Social Networks, pp. 91–111. Elsevier (2017). https://doi.org/10.1016/B978-0-12-804412-4.00006-1

  12. Yan, J., Pan, Y., Yun, T.: Analysis of Chinese video website barrage language based on the influence of the ACGN culture. Int. J. Internet Broadcasting Commun. 13(2), 195–207 (2021)

    Google Scholar 

  13. Yu, S., Zhu, H., Jiang, S., Zhang, Y., Xing, C., Chen, H.: Emoticon analysis for Chinese social media and e-commerce: the AZEmo system. ACM Trans. Manag. Inf. Syst. 9(4), 1–22 (2018). https://doi.org/10.1145/3309707

    Article  Google Scholar 

  14. Hsieh, Y.H., Zeng, X.P.: Sentiment analysis: An ERNIE-BiLSTM approach to bullet screen comments. Sensors 22(14), 5223 (2022)

    Article  Google Scholar 

  15. Haddi, E., Liu, X., Shi, Y.: The role of text pre-processing in sentiment analysis. Procedia Comput. Sci. 17, 26–32 (2013). https://doi.org/10.1016/j.procs.2013.05.005

    Article  Google Scholar 

  16. Tan, S., Ngo, C.-W., Tan, H.-K., Pang, L.: Cross media hyperlinking for search topic browsing. In: Proceedings of the 19th ACM International Conference on Multimedia, 243–252 (2011). https://doi.org/10.1145/2072298.2072331

  17. Matsumoto, S., Takamura, H., Okumura, M.: Sentiment classification using word sub-sequences and dependency sub-trees. In: Ho, T.B., Cheung, D., Liu, H. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2005. Lecture Notes in Computer Science, vol. 3518. Springer, Berlin, Heidelberg(2005). https://doi.org/10.1007/11430919_37

  18. Rahman, J.S., Hossain, M.Z., Gedeon, T.: Measuring observers’ EDA responses to emotional videos. In: Proceedings of the 31st Australian Conference on Human-Computer-Interaction, pp. 457–461 (2019)

    Google Scholar 

  19. Kim, J., André, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2067–2083 (2008)

    Article  Google Scholar 

  20. Jang, E.H., Park, B.J., Park, M.S., Kim, S.H., Sohn, J.H.: Analysis of physiological signals for recognition of boredom, pain, and surprise emotions. J. Physiol. Anthropol. 34(1), 1–12 (2015)

    Article  Google Scholar 

  21. Music Private Collection. Charlie Puth’s “See You Again” explodes with fire! Cherish the people around you! Bilibili (23 October 2021). https://www.bilibili.com/list/watchlater?bvid=BV1qU4y1F73A&oid=676186170

  22. Music for Classmates Jun. HDR Frozen theme song “Let It Go” by Idina Menzel 2160P! My phone is a little bit stuck! Bilibili (20 February 2022). https://www.bilibili.com/list/watchlater?bvid=BV1RR4y1L76K&oid=339176835

  23. G_callen. [4K] Maroon 5 – Sugar. Bilibili (23 March 2021). https://www.bilibili.com/list/watchlater?bvid=BV1gh411D753&oid=204834300

  24. Petrichoryi. Sentiment analysis of text based on sentiment dictionary. CSND (30 April 2020). https://blog.csdn.net/Petrichoryi/article/details/105861462

  25. Chen, M.: Hellonlp/Sentiment-Analysis. Github (2023). https://github.com/hellonlp/sentiment-analysis/tree/master/sentiment_analysis_dict/dict

  26. Liu, L., Suh, A., Wagner, C.: Watching online videos interactively: the impact of media capabilities in Chinese Danmaku video sites. Chin. J. Commun. 9(3), 283–303 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China [grant number 62207008] and General Program of Stable Support Plan for Universities in Shenzhen [grant number GXWD20231129154726002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchuan Li .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Li, Q., Song, Y. (2025). Evaluating Real-Time Emotional Responses Using Bullet Screen Sentiment Analysis: Evidence from Electrodermal Activity. In: Coman, A., Vasilache, S., Fui-Hoon Nah, F., Siau, K.L., Wei, J., Margetis, G. (eds) HCI International 2024 – Late Breaking Papers. HCII 2024. Lecture Notes in Computer Science, vol 15375. Springer, Cham. https://doi.org/10.1007/978-3-031-76806-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76806-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76805-7

  • Online ISBN: 978-3-031-76806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics