Skip to main content

The Influencing Factors of Young Designers’ Intentions to Continue Using Artificial Intelligence Generated Content Platforms

  • Conference paper
  • First Online:
HCI International 2024 – Late Breaking Papers (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15375))

Included in the following conference series:

  • 484 Accesses

  • 1 Citation

Abstract

In recent years, with the rapid emergence of Artificial Intelligence Generated Content (AIGC) platforms such as ChatGPT and Midjourney, the traditional content creation process has been completely transformed. Young designers, as the group with the highest acceptance of AIGC platforms, play a pioneering role in this technological revolution. However, the factors influencing the continued usage of these platforms by young designers remain unclear, which is crucial for the commercial sustainability of AIGC platforms. To address this research gap, this study constructs the AIGC Continuous Usage Model (ACUM) based on the Expectation Confirmation Model (ECM) and the Technology Acceptance Model (TAM), analyzing the key factors influencing the continued usage of AIGC platforms by young designers. The study encompasses various subfields of design, including product design, visual design, interior design, and landscape design. We focused our research on the well-known platforms ChatGPT and Midjourney. The results indicate that perceived usefulness, satisfaction, and ease of use significantly influence the continued usage intention of AIGC platforms by users. Factors such as expected confirmation, content quality, habit, enjoyment, and system quality also indirectly affect users’ intention to use these platforms. Valuable recommendations for designers include enhancing platform functionality, improving user experience and satisfaction, simplifying operation processes, ensuring content quality and system stability, and fostering user habits and enjoyment for continued usage. This study provides valuable insights for developers and young designer users of AIGC platforms, offering scientific suggestions for platform development to ensure their sustainability in the design industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 79.17
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Disclosure of Interests

It is now necessary to declare any competing interests or to specifically state that the authors have no competing interests. Please place the statement with a third level heading in 9-point font size beneath the (optional) acknowledgments Footnote 1, for example: The authors have no competing interests to declare that are relevant to the content of this article. Or: Author A has received research grants from Company W. Author B has received a speaker honorarium from Company X and owns stock in Company Y. Author C is a member of committee Z.

Notes

  1. 1.

    If EquinOCS, our proceedings submission system, is used, then the disclaimer can be provided directly in the system.

References

  1. Cao, Y., Li, S., Liu, Y., et al.: A comprehensive survey of ai-generated content (aigc): a history of generative AI from Gan to chatgpt. arXiv preprint arXiv:2303.04226 (2023)

  2. Yunjiu, L., Wei, W., Zheng, Y.: Artificial intelligence-generated and human expert-designed vocabulary tests: a comparative study. SAGE Open 12(1), 21582440221082130 (2022)

    Article  Google Scholar 

  3. Poltronieri, F.A., Hänska, M.: Technical images and visual art in the era of artificial intelligence: from GOFAI to GANs. In: Proceedings of the 9th International Conference on Digital and Interactive Arts, pp. 1–8 (2019)

    Google Scholar 

  4. Cetinic, E., She, J.: Understanding and creating art with AI: review and outlook. ACM Trans. Multimedia Comput. Commun. Appl. 18(2), 1–22 (2022)

    Google Scholar 

  5. Chen, M., Radford, A., Child, R., et al.: Generative pretraining from pixels. In: International Conference on Machine Learning, pp. 1691–1703. PMLR (2020)

    Google Scholar 

  6. Floridi, L., Chiriatti, M.: GPT-3: its nature, scope, limits, and consequences. Mind. Mach. 30, 681–694 (2020)

    Article  Google Scholar 

  7. Cetinic, E., Grgic, S.: Automated painter recognition based on image feature extraction. In: Proceedings ELMAR-2013, pp. 19–22. IEEE (2013)

    Google Scholar 

  8. Keren, D.: Painter identification using local features and naive bayes. In: 2002 International Conference on Pattern Recognition, vol. 2, pp. 474–477. IEEE (2002)

    Google Scholar 

  9. Agarwal, S., Karnick, H., Pant, N., et al.: Genre and style-based painting classification. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 588–594. IEEE (2015)

    Google Scholar 

  10. Shamir, L., Macura, T., Orlov, N., et al.: Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. ACM Trans. Appl. Percept. 7(2), 1–17 (2010)

    Article  Google Scholar 

  11. Chang, Y.P., Zhu, D.H.: The role of perceived social capital and flow experience in building users’ continuance intention to social networking sites in China. Comput. Hum. Behav. 28(3), 995–1001 (2012)

    Article  Google Scholar 

  12. Deng, X., Yuan, L.: Integrating technology acceptance model with social capital theory to promote passive users’ continuance intention toward virtual brand communities. IEEE Access 8, 73061–73070 (2020)

    Article  Google Scholar 

  13. Gong, X., Liu, Z., Zheng, X., et al.: Why are experienced users of WeChat likely to continue using the app?. Asia Pacific J. Market. Logist. (2018)

    Google Scholar 

  14. Bhattacherjee, A.: Understanding information systems continuance: an expectation-confirmation model. MIS Quar. 351–370 (2001)

    Google Scholar 

  15. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)

    Article  Google Scholar 

  16. Kim, B.: An empirical investigation of mobile data service continuance: incorporating the theory of planned behavior into the expectation–confirmation model. Expert Syst. Appl. 37(10), 7033–7039 (2010)

    Article  Google Scholar 

  17. Cheng, Y.M.: Effects of quality antecedents on e‐learning acceptance. Internet Res. (2012)

    Google Scholar 

  18. Al-Hattami, H.M.: Determinants of intention to continue usage of online shopping under a pandemic: COVID-19. Cogent Bus. Manage. 8(1), 1936368 (2021)

    Article  Google Scholar 

  19. Prasetya, F.H., Harnadi, B., Widiantoro, A.D., et al.: Extending ECM with quality factors to investigate continuance intention to use E-learning. In: 2021 Sixth International Conference on Informatics and Computing (ICIC), pp. 1–7. IEEE (2021)

    Google Scholar 

  20. Gelderblom, H., Matthee, M., Hattingh, M., et al.: High school learners’ continuance intention to use electronic textbooks: a usability study. Educ. Inf. Technol. 24, 1753–1776 (2019)

    Article  Google Scholar 

  21. Gao, L.: Research on the influence of interactive animation based on extended TAM model on user focus immersion in software application. Converter 2021(7), 1109–1116 (2021)

    Google Scholar 

  22. Allam, H., Qusa, H., Alameer, O., et al.: Theoretical perspective of technology acceptance models: towards a unified model for social media applciations. In: 2019 Sixth HCT Information Technology Trends (ITT), pp. 154–159. IEEE (2019)

    Google Scholar 

  23. Nadlifatin, R., Miraja, B., Persada, S., et al.: The measurement of University students’ intention to use blended learning system through technology acceptance model (TAM) and theory of planned behavior (TPB) at developed and developing regions: lessons learned from Taiwan and Indonesia. Int. J. Emerg. Technol. Learn. 15(9), 219–230 (2020)

    Article  Google Scholar 

  24. Anderson, E.W., Sullivan, M.W.: The antecedents and consequences of customer satisfaction for firms. Mark. Sci. 12(2), 125–143 (1993)

    Article  Google Scholar 

  25. Patterson, P.G., Johnson, L.W., Spreng, R.A.: Modeling the determinants of customer satisfaction for business-to-business professional services. J. Acad. Mark. Sci. 25(1), 4–17 (1997)

    Article  Google Scholar 

  26. Barnes, S.J., Böhringer, M.: Modeling user continuance behavior in microblogging services: the case of Twitter. J. Comput. Inform. Syst. 51(4), 1–10 (2011)

    Google Scholar 

  27. Lee, M.C.: Explaining and predicting users’ continuance intention toward elearning: an extension of the expectation–onfirmation model. Comput. Educ. 54(2), 506–516 (2010)

    Article  Google Scholar 

  28. Lee, M.C., Tsai, T.R.: What drives people to continue to play online games? An extension of technology model and theory of planned behavior. Int. J. Hum.-Comput. Interact. 26(6), 601–620 (2010)

    Article  Google Scholar 

  29. Tang, J.E., Chiang, C.: Integrating experiential value of blog use into the expectation- confirmation theory model. Soc. Behav. Pers. 38(10), 1377–1389 (2010)

    Article  Google Scholar 

  30. Taylor, P.A.T.: Understanding information technology usage: a test of competing models. Inform. Syst. Res. 6(2), 144–176 (1995)

    Google Scholar 

  31. Davis, R.P., Bagozzi, P.R.W.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)

    Article  Google Scholar 

  32. Mathieson: predicting user intentions: comparing the technology acceptance model with the theory of planned behaviour. Inform. Syst. Res. 2(3), 173–191 (1991)

    Google Scholar 

  33. Venkatesh, F.D.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manage. Sci. 46(2), 186–204 (2000)

    Article  Google Scholar 

  34. Adi, A., et al.: The use of a Technology Acceptance Model (TAM) to predict patients’ usage of a personal health record system: the role of security, privacy, and usability. Int. J. Environ. Res. Public Health 20.2, 1347 (2023)

    Google Scholar 

  35. Natasia, S.R., Yuyun, T.W., Parastika, A.: Acceptance analysis of NUADU as e-learning platform using the Technology Acceptance Model (TAM) approach. Procedia Comput. Sci. 197,512–520 (2022)

    Google Scholar 

  36. Zin, K.S.L.T., et al.: A study on technology acceptance of digital healthcare among older korean adults using extended tam (Extended Technology Acceptance Model). Administ. Sci. 13.2, 42 (2023)

    Google Scholar 

  37. Stone, R.W., Baker-Eveleth, L.: Students’ expectation, confirmation and continuance intention to useelectronic textbooks. Comput. Hum. Behav. 29(3), 984–990 (2013)

    Article  Google Scholar 

  38. Wang, W., Ngai, E.W.T., Wei, H.: Explaining instant messaging continuance intention: the role of personality. Int. J. Hum.-Comput. Interact. 28(8), 500–510 (2011)

    Article  Google Scholar 

  39. Abbas, H.A., Hamdy, H.I.: Determinants of continuance intention factor in Kuwait communication market: case study of Zain-Kuwait. Comput. Hum. Behav. 49, 648–657 (2015)

    Article  Google Scholar 

  40. Li, H., Liu, Y.: Understanding post-adoption behaviors of e-service users in the context of online travel services. Inform. Manage. 51(8), 1043–1052 (2014)

    Article  Google Scholar 

  41. Lin, W.-S., Wang, C.-H.: Antecedences to continued intentions of adopting e-learning system in blended learning instruction: a contingency framework based on models of information system success and task-technology fit. Comput. Educ. 58(1), 88–99 (2012)

    Article  Google Scholar 

  42. Tang, J.-T.E., Tang, T.-I., Chiang, C.-H.: Blog learning: effects of users’ usefulness and efficiency towards continuance intention. Behav. Inform. Technol. 33(1), 36–50 (2012)

    Article  Google Scholar 

  43. Chou, S.-W., Min, H.-T., Chang, Y.-C., Lin, C.-T.: Understanding continuance intention of knowledge creation using extended expectation– confirmation theory: an empirical study of Taiwan and China online communities. Behav. Inform. Technol. 29(6), 557–570 (2009)

    Article  Google Scholar 

  44. Park, N., Rhoads, M., Hou, J., Lee, K.M.: Understanding the acceptance of teleconferencing systems among employees: an extension of the technology acceptance model. Comput. Hum. Behav. 39, 118–127 (2014)

    Article  Google Scholar 

  45. Alturki, U., Aldraiweesh, A.: Application of learning management system (LMS) during the covid-19 pandemic: a sustainable acceptance model of the expansion technology approach. Sustainability 13(19), 10991 (2021)

    Article  Google Scholar 

  46. Chiu, C.-M., Wang, E.T.G.: Understanding Web-based learning continuance intention: the role of subjective task value. Inform. Manage. 45(3), 194–201 (2008)

    Article  MathSciNet  Google Scholar 

  47. Oliver, R.L.: A cognitive model for the antecedents and consequences of satisfaction. J. Mark. Res. 17(4), 460–469 (1980)

    Article  Google Scholar 

  48. Bhattacherjee, A., Barfar, A.: Information technology continuance research: current state and future directions. Asia Pacific J. Inform. Syst. 21(2), 1–18 (2011)

    Google Scholar 

  49. Lee, Y., Kwon, O.: Intimacy, familiarity and continuance intention: an extended expectation–confirmation model in web-based services. Electron. Commer. Res. Appl. 10(3), 342–357 (2011)

    Article  MathSciNet  Google Scholar 

  50. Agrebi, S., Jallais, J.: Explain the intention to use smartphones for mobile shopping. J. Retail. Consum. Serv. 22, 16–23 (2015)

    Article  Google Scholar 

  51. Almahamid, S., Rub, F.A.: Factors that determine continuance intention to use e-learning system: an empirical investigation. In: International Conference on Telecommunication Technology and Applications Proceedings of CSIT, vol. 5(1), pp. 242–246 (2011)

    Google Scholar 

  52. Alshurideh, M., Salloum, S.A., Al Kurdi, B., et al.: Understanding the quality determinants that influence the intention to use the mobile learning platforms: a practical study. Int. J. Interact. Mobile Technol. 13(11) (2019)

    Google Scholar 

  53. Chen, C.W.: Impact of quality antecedents on taxpayer satisfaction with online tax-filing systems—an empirical study. Inform. Manage. 47(5–6), 308–315 (2010)

    Article  Google Scholar 

  54. Lin, H.F.: The impact of website quality dimensions on customer satisfaction in the B2C e-commerce context. Total Qual. Manag. Bus. Excell. 18(4), 363–378 (2007)

    Article  Google Scholar 

  55. Liao, C., Palviab, P., Lin, H.-N.: The roles of habit and web site quality in ecommerce. Int. J. Inf. Manage. 26(6), 469–483 (2006)

    Article  Google Scholar 

  56. Gefen, D., Straub, D.W., Boudreau, M.C.: Structural equation modeling and regression: guidelines for research practice. Commun. Assoc. Inf. Syst. 4(7), 1–70 (2000)

    Google Scholar 

  57. Limayenm, M., Hirt, S.G., Cheung, C.M.K.: Habit in the context of IS continuance: theory extension and scale development (2003)

    Google Scholar 

  58. Kang, Y.S., Hong, S., Lee, H.: Exploring continued online service usage behavior: the roles of self-image congruity and regret. Comput. Hum. Behav. 25(1), 111–122 (2009)

    Article  Google Scholar 

  59. van der Heijden, H.: User acceptance of hedonic information systems. MIS Q. 28(4), 695–704 (2004)

    Article  Google Scholar 

  60. Ha, S., Stoel, L.: Consumer e-shopping acceptance: antecedents in a technology acceptance model. J. Bus. Res. 62(5), 565–571 (2009)

    Article  Google Scholar 

  61. Cyr, D., Head, M., Ivanov, A.: Design aesthetics leading to m-loyalty in mobile commerce. Inform. Manage. 43(8), 950–963 (2006)

    Article  Google Scholar 

  62. Hsiao, C.-C., Chiou, J.-S.: The effects of a player’s network centrality on resource accessibility, game enjoyment, and continuance intention: a study on online gaming communities. Electron. Commer. Res. Appl. 11, 75–84 (2012)

    Article  Google Scholar 

  63. Zhou, T., Lu, Y.: Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Comput. Hum. Behav. 27(2), 883–889 (2011)

    Article  Google Scholar 

  64. Thong, J.Y.L., Hong, S.J., Tam, K.Y.: The effects of post-adoption beliefs on the expectation–confirmation model for information technology continuance. Int. J. Hum. Comput Stud. 64(9), 799–810 (2006)

    Article  Google Scholar 

  65. Wen, C., Prybutok, V.R., Xu, C.: An integrated model for customer online repurchase intention. J. Comput. Inform. Syst. 52(1), 14–23 (2011)

    Google Scholar 

  66. Gorla, N., Somers, T.M., Wong, B.: Organizational impact of system quality, information quality, and service quality. J. Strateg. Inf. Syst. 19, 207–228 (2010)

    Article  Google Scholar 

  67. Cheng, Y.M.: The effects of information systems quality on nurses’ acceptance of the electronic learning system. J. Nurs. Res. 20, 19–31 (2012)

    Article  Google Scholar 

  68. Zhou, T.: Examining the critical success factors of mobile website adoption. Online Inf. Rev. 35, 636–652 (2011)

    Article  Google Scholar 

  69. Tencent. How did Midjourney succeed (2023).https://new.qq.com/rain/a/20230508A0A4IX00. Accessed 8 May 2023

  70. Kwon, O., Wen, Y.: An empirical study of the factors affecting social network service use. Comput. Hum. Behav. 26(2), 254–263 (2010)

    Article  Google Scholar 

  71. Mäntymäki, M., Salo, J.: Teenagers in social virtual worlds: Continuous use and purchasing behavior in Habbo Hotel. Comput. Hum. Behav. 27(6), 2088–2097 (2011)

    Article  Google Scholar 

  72. Lin, K.-Y., Lu, H.-P.: Why people use social networking sites: an empirical study integrating network externalities and motivation theory. Comput. Hum. Behav. 27(3), 1152–1161 (2011)

    Article  Google Scholar 

  73. Chiu, C.-M., Hsu, M.-H., Lai, H., Chang, C.-M.: Re-examining the influence of trust on online repeat purchase intention: the moderating role of habit and its antecedents. Decis. Support Syst. 53(4), 835–845 (2012)

    Article  Google Scholar 

  74. Limayem, M., Hirt, S.G.: Force of habit and information systems usage: theory and initial validation. J. Assoc. Inf. Syst. 4(1), 3 (2003)

    Google Scholar 

  75. Limayem, M., Hirt, S.G., Cheung, C.M.K.: Habit in the context of IS continuance: Theory extension and scale development. In: Proceedings of the eleventh European conference on information systems (ECIS 2003). Naples, Italy, June 19–21 (2003)

    Google Scholar 

  76. Petter, S., DeLone, W., McLean, E.: Measuring information systems success: models, dimensions, measures, and interrelationships. Eur. J. Inf. Syst. 17, 236–263 (2008)

    Article  Google Scholar 

  77. Ho, C.L., Dzeng, R.J.: Construction safety training via e-learning: learning effectiveness and user satisfaction. Comput. Educ. 55, 858–867 (2010)

    Article  Google Scholar 

  78. Ozkan, S., Koseler, R.: Multi-dimensional students’ evaluation of e-learning systems in the higher education context: an empirical investigation. Comput. Educ. 53, 1285–1296 (2009)

    Article  Google Scholar 

  79. Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C.: Multivariate data analysis with readings, 5th edn. Macmillan, New York (1998)

    Google Scholar 

  80. Anderson, J.C., Gerbing, D.W.: Structural equation modeling in practice: a review and recommended two-step approach. Psychol. Bull. 103(3), 411–423 (1988)

    Article  Google Scholar 

  81. Chin, W.W., Gopal, A.: Adoption intention in GSS: Relative importance of beliefs. Data Base Adv. Inform. Syst. 26(2–3), 42–64 (1995)

    Article  Google Scholar 

  82. Nunnally, J.C., Bernstein, I.H.: Psychometric theory, 3rd edn. McGraw-Hill, New York (1994)

    Google Scholar 

Download references

Acknowledgments

A third level heading in 9-point font size at the end of the paper is used for general acknowledgments, for example: This study was funded by X (grant number Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, X., Li, J., Li, W. (2025). The Influencing Factors of Young Designers’ Intentions to Continue Using Artificial Intelligence Generated Content Platforms. In: Coman, A., Vasilache, S., Fui-Hoon Nah, F., Siau, K.L., Wei, J., Margetis, G. (eds) HCI International 2024 – Late Breaking Papers. HCII 2024. Lecture Notes in Computer Science, vol 15375. Springer, Cham. https://doi.org/10.1007/978-3-031-76806-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76806-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76805-7

  • Online ISBN: 978-3-031-76806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics