Liu, C. C., Koto, F., Baldwin, T., et al.: Are multilingual LLMs culturally-diverse reasoners? An investigation into multicultural proverbs and sayings. arXiv preprint arXiv:2309.08591 (2023)
Beguš, G., Dąbkowski, M., Rhodes, R.: Large linguistic models: analyzing theoretical linguistic abilities of LLMs. arXiv preprint arXiv:2305.00948 (2023)
Muñoz-Ortiz, A., Gómez-Rodríguez, C., Vilares, D.: Contrasting linguistic patterns in human and LLM-generated text. arXiv preprint arXiv:2308.09067 (2023)
Lin, Y. T., Chen, Y. N.: Taiwan LLM: bridging the linguistic divide with a culturally aligned language model. arXiv preprint arXiv:2311.17487 (2023)
Yamazaki, K., Vo, K., Truong, Q. S., et al.: VLTinT: visual-linguistic transformer-in-transformer for coherent video paragraph captioning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37(3), pp. 3081–3090 (2023)
Google Scholar
Deng, J., Yang, Z., Chen, T., et al.: TransVG: end-to-end visual grounding with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1769–1779 (2021)
Google Scholar
Lan, G., Liu, X. Y., Zhang, Y., et al.: Communication-efficient federated learning for resource-constrained edge devices. IEEE Trans. Mach. Learn. Commun. Netw. (2023)
Google Scholar
Challen, R., Denny, J., Pitt, M., et al.: Artificial intelligence, bias and clinical safety. BMJ Qual. Saf. 28(3), 231–237 (2019)
Article
Google Scholar
Stanley, B.: The reshaping of Christian tradition: western denominational identity in a non-western context. Stud. Church Hist. 32, 399–426 (1996)
Article
Google Scholar
İlhan, B., Gürses, B. O., Güneri, P.: Addressing inequalities in science: the role of language learning models in bridging the gap. Int. Dental J. (2024)
Google Scholar
Cotterell, R., Mielke, S. J., Eisner, J., Roark, B.: Are all languages equally hard to language-model?. ArXiv preprint arXiv:1806.03743 (2018)
Mahowald, K., Ivanova, A.A., Blank, I.A., et al.: Dissociating language and thought in large language models: a cognitive perspective. arXiv preprint arXiv:2301.06627 (2023)
Mengesha, Z., Heldreth, C., Lahav, M., et al.: I don’t think these devices are very culturally sensitive - Impact of automated speech recognition errors on African Americans. Front. Artif. Intell. 4, 725911 (2021)
Google Scholar
McIntosh, T. R., Liu, T., Susnjak, T., et al.: A culturally sensitive test to evaluate nuanced GPT hallucination. IEEE Trans. Artif. Intell. (2023)
Google Scholar
Haim, G., Gal, Y., Gelfand, M., et al.: A cultural sensitive agent for human-computer negotiation. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 451–458 (2012)
Google Scholar
Parra, C.M., Gupta, M., Dennehy, D.: Likelihood of questioning AI-based recommendations due to perceived racial/gender bias. IEEE Trans. Technol. Soc. 3(1), 41–45 (2021)
Article
Google Scholar
Schwartz, R., Schwartz, R., Vassilev, A., et al.: Towards a standard for identifying and managing bias in artificial intelligence. US Department of Commerce, National Institute of Standards and Technology (2022)
Google Scholar
Kulesz, O.: Culture, platforms and machines: the impact of artificial intelligence on the diversity of cultural expressions. In: Intergovernmental Committee for the Protection and Promotion of the Diversity of Cultural Expressions, vol. 12 (2018)
Google Scholar
Nguyen, X. P., Aljunied, S. M., Joty, S., et al.: Democratizing LLMs for low-resource languages by leveraging their English dominant abilities with linguistically-diverse prompts. arXiv preprint arXiv:2306.11372 (2023)
Tian, G., Xu, Y.: A study on the typeface design method of Han characters imitated Tangut. Adv. Educ. Hum. Soc. Sci. Res. 1(2), 270–270 (2022)
MathSciNet
Google Scholar
Ntoutsi, E., Fafalios, P., Gadiraju, U., et al.: Bias in data-driven artificial intelligence systems-an introductory survey. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 10(3), e1356 (2020)
Article
Google Scholar
Langer, M., König, C.J., Back, C., et al.: Trust in artificial intelligence: comparing trust processes between human and automated trustees in light of unfair bias. J. Bus. Psychol. 38(3), 493–508 (2023)
Article
Google Scholar
Hagendorff, T., Bossert, L.N., Tse, Y.F., et al.: Speciesist bias in AI: how AI applications perpetuate discrimination and unfair outcomes against animals. AI Ethics 3(3), 717–734 (2023)
Article
Google Scholar
Roselli, D., Matthews, J., Talagala, N.: Managing bias in AI. In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 539–544 (2019)
Google Scholar
Nazer, L.H., Zatarah, R., Waldrip, S., et al.: Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit. Health 2(6), e0000278 (2023)
Article
Google Scholar
Ehsan, U., Liao, Q.V., Muller, M., et al.: Expanding Explainability: Towards Social Transparency in AI Systems. Springer, Cham (2021)
Google Scholar
Larsson, S., Heintz, F.: Transparency in artificial intelligence. Internet Policy Rev. 9(2) (2020)
Google Scholar
Das, A., Rad, P.: Opportunities and challenges in explainable artificial intelligence (XAI): a survey. arXiv preprint arXiv:2006.11371 (2020)
Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–115 (2020)
Article
Google Scholar
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)
Article
Google Scholar
Holzinger, A., Saranti, A., Molnar, C., Biecek, P., Samek, W.: Explainable AI methods - a brief overview. In: Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., Samek, W. (eds.) xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pp. 13–38. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-04083-2_2
Chapter
Google Scholar
Hanif, A., Zhang, X., Wood, S.: A survey on explainable artificial intelligence techniques and challenges. In: 2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 81–89. IEEE (2021)
Google Scholar
Ali, S., Abuhmed, T., El-Sappagh, S., et al.: Explainable Artificial Intelligence (XAI): what we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fus. 99, 101805 (2023)
Article
Google Scholar
Chamola, V., Hassija, V., Sulthana, A.R., et al.: A review of trustworthy and explainable artificial intelligence (XAI). IEEE (2023)
Google Scholar